Estimating the Genetic Situation of Native Upper Egypt Subpopulations of Rabbits Using Microsatellite Markers

Ahmed Mostafa Emam, Maysoon M Makhlouf, E Faid-Allah

Abstract

This study aimed to explore genetic diversity in four native upper Egypt subpopulations of rabbits using microsatellite markers.  A total of 247 biological samples were collected from unrelated individuals of native Upper Egypt rabbit (NUER) subpopulations across 77 rural villages and were genotyped via 31 microsatellite loci.  Four hundred ninety-six alleles were recorded among the 4 NUER subpopulations, with about 43% being private.  Luxor's subpopulation exhibited the most significant values of the mean number of alleles, which was 19.012, allelic richness was 8.009, and private alleles were 133.  The negative values of the inbreeding coefficient were recorded in Qena and Luxor (-0.084 and -0.134, respectively).  About 45% of loci gave highly polymorphic information content (PIC), and 58% were insignificant in Hardy –Weinberg equilibrium (HWE).  The overlapping between Asyut and Sohag has appeared in the discriminant analysis of principal components (DAPC).  Generally, we concluded that the classification is based on geographical directions to southern subpopulations (Qena and Luxor) and northern (Asyut and Sohag).  Except that, the southern subpopulations (Qena and Luxor) showed high genetic variation.  This study could be used as supporting documents for researchers in rabbit breeding and agriculture at national and regional levels. 

Keywords

Genetic Diversity; Native Rabbits; Upper Egypt; Microsatellite

Full Text:

PDF

References

Abdel-Kafy EM, Ahmed SS, El-Keredy A, Ali NI, Ramadan S, Farid A. 2018. Genetic and phenotypic characterization of the native rabbits in Middle Egypt. Vet World. 11:1120-1126. DOI:10.14202/vetworld.2018.1120-1126.

Abdel-Kafy EM, Ghaly IS, Larbi MB, Ahmed SS, Badawi YK, Hassan NS. 2016. Genetic diversity and phenotype characterization of native rabbit in Middle Egypt. J New Sci. 8:312-1320.

Adeolu AI, Wheto M, Oleforuh-Okoleh VU, Nwose RN, Adenaike AS, Yakubu A, Abiola EM, Mohammed BG. 2021. Genetic diversity of rabbit (Oryctolagus cuniculus) population in South Eastern Nigeria using microsatellite markers. Trop Anim Sci J. 44:280-287. DOI:10.53 98/tasj.2021.44.3.280.

Alda F, Doadrio I. 2014. Spatial genetic structure across a hybrid zone between European rabbit subspecies. PeerJ. 2:2-24. DOI:10.7717/peerj.582.

Allam M, Al-Farga A, Wilson M. 2024. Molecular genetic variations of some rabbit breeds using small mitochondrial rRNA sequences. Res Square. p. 1-15. DOI:10.21203/rs.3.rs-3905831/v1.

Alves JM, Carneiro M, Afonso S, Lopes S, Garreau H, Boucher S, Allain D, Queney G, Esteves PJ, Bolet G. 2015. Levels and patterns of genetic diversity and population structure in domestic rabbits. PloS one. 10:1-20. DOI:10.1371 /journal.pone.0144687.

Ballan M, Bovo S, Schiavo G, Schiavitto M, Negrini R, Fontanesi L. 2022. Genomic diversity and signatures of selection in meat and fancy rabbit breeds based on high-density marker data. Genet Sel Evol. 54:1-18.

Ben Larbi M, San-Cristobal M, Chantry-Darmon C, Bolet G. 2014. Population structure in Tunisian indigenous rabbit ascertained using molecular information. WRS. 22:223. DOI:10.4995/wrs.2014.1468.

Bora SK, Tessema TS, Girmay G. 2023. Genetic diversity and population structure of selected Ethiopian indigenous cattle breeds using microsatellite markers. Genet Res. 2023:1-12. DOI:10.1155/2023/1106755.

Bouhali A, Homrani A, Ferrand N, Lopes S, Emam AM. 2023. Assessment of genetic diversity among native Algerian rabbit populations using microsatellite markers. Archives Animal Breeding. 66:207-215. DOI:10.5194/aab-66-207-2023.

Cheptanui SP. 2022. Population structure, growth and carcass characterization of domesticated rabbits (Oryctolagus cuniculus l.) in North Rift and Western Kenya. Kenya (KEN): University of Eldoret.

Cinelli P, Rettich A, Seifert B, Bürki K, Arras M. 2007. Comparative analysis and physiological impact of different tissue biopsy methodologies used for the genotyping of laboratory mice. Lab Anim. 41:174-184. DOI:10.1258/002367707780378113.

Datta P, Behera B, Rahut DB. 2024. Assessing the role of agriculture-forestry-livestock nexus in improving farmers' food security in South Asia: A systematic literature review. Agric Syst. 213:103807. DOI:10.1016 /j.agsy.2023.103807.

Demiray A, Gündüz Z, Ata N, Y?lmaz O, Cemal ?, Konyal? A, Semen Z, Altunta? A, Atik A, Akçay A, Ba? H, ?enyüz HH. 2024. Genetic diversity and population structure of Anatolian hair goats, an ancient breed. AAB. 67:13-23. DOI:10.5194/aab-67-13-2024.

Dudu A, Popa G-O, Ghi?? E, Pelmu? R, Laz?r C, Costache M, Georgescu SE. 2020. Assessment of genetic diversity in main local sheep breeds from romania using microsatellite markers. AAB. 63:53-59. DOI:10.5194 /aab-63-53-2020.

El-Aksher S, Sherif H, Khalil M, El-Garhy H, Ramadan S. 2016. Comparative genetic analysis among moshtohor line rabbits and their parental lines using microsatellite markers. Proceeding of 3rd International Conference on Biotechnology Applications in Agriculture. Egypt ( Benha (EGY):Benha University. 3:5-9.

El-Aksher SH, Sherif H, Khalil M, El-Garhy HA, Ramadan S. 2017. Molecular analysis of a new synthetic rabbit line and their parental populations using microsatellite and snp markers. Gene Reports. 8:17-23. DOI:10.1016/j.g enrep.2017.05.001.

Emam, Azoz AAA, Mehaisen GMK, Ferrand N, Ahmed NA. 2017. Diversity assessment among native middle egypt rabbit populations in north upper-egypt province by microsatellite polymorphism. WRS. 25:9. DOI:10.4995/ wrs.2017.5298.

Emam AM, Afonso S, Azoz AAA, González-Redondo P., Mehaisen G.M.K., Ahmed N.A., N. F. 2016. Microsatellite polymorphism in some Egyptian and Spanish common rabbit breeds. Proceedings 11th World Rabbit Congress. Qingda (CHN).

Emam AM, Afonso S, González-Redondo P, Mehaisen G, Azoz A, Ahmed N, Fernand N. 2020. Status and origin of Egyptian local rabbits in comparison with Spanish common rabbits using mitochondrial DNA sequence analysis. WRS. 28:93-102. DOI:10.4995/wrs.202 0.12219.

Emam AM, Azoz AAA, Mehaisen GMK, Ferrand N, Ahmed NA. 2017b. Diversity assessment among native Middle Egypt rabbit populations in North Upper-Egypt Province by microsatellite polymorphism. WRS. 25:9. DOI:10. 4995/wrs.2017.5298.

Galal OM. 2021. Controlling solar radiation through urban form manipulation to improve thermal performance of outdoor spaces in Upper Egypt. der Technischen Universität Berlin. DOI:10.14279/depositonce-12358.

Goudet J. 2002. Fstat v. 2.9.3.2.: A computer program to calculate f-statistics. J Hered. p. 485-486.

Hoban S, Archer FI, Bertola LD, Bragg JG, Breed MF, Bruford MW, Coleman MA, Ekblom R, Funk WC, Grueber CE et al. 2022. Global genetic diversity status and trends: Towards a suite of essential biodiversity variables (ebvs) for genetic composition. Biological Reviews. 97:1511-1538. DOI:10.1111/brv.12852.

Holmes IA, Monagan IV, Westphal MF, Johnson PJ, Rabosky D, Alison R. 2023. Parsing variance by marker type: Testing biogeographic hypotheses and differential contribution of historical processes to population structure in a desert lizard. Mol Ecol. 32:4880-4897. DOI:10.1111/mec.17076.

Iannella A, Peacock D, Cassey P, Schwensow N. 2019. Genetic perspectives on the historical introduction of the European rabbit (Oryctolagus cuniculus) to Australia. Biol Invasions. 21:603-614.

Ismail SA, Duwe VK, Zippel E, Borsch T. 2018. Assessment of current genetic structure from local to geographic scales indicates brake down of historically extensive gene flow in the dry grassland species Scabiosa canescens Waldst. & kit. (Dipsacaceae). Divers Distrib. 24:233-243. DOI:10.1111/ddi.12667.

Jochová M, Novák K, Kott T, Volek Z, Majzlík I, T?mová E. 2017. Genetic characterization of Czech local rabbit breeds using microsatellite analysis. Livest Sci. 201:41-49. DOI:10.1016/j.livsci.2017.03.025.

Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. J Mol Ecol. 16:1099-1106. DOI:10.1111/j.1365-294X.2007. 03089.x.

Kardos M, Armstrong EE, Fitzpatrick SW, Hauser S, Hedrick PW, Miller JM, Tallmon DA, Funk WC. 2021. The crucial role of genome-wide genetic variation in conservation. Proceedings of the National Academy of Sciences. 118:e2104642118. DOI:10.1073/pnas.21046 42118.

Kasarda R, Jamborová ?, Morav?íková N. 2020. Genetic diversity and production potential of animal food resources. Acta Fytotech Zootech. 23:102-108. DOI:10. 15414/afz.2020.23.02.102-108.

Lai F-Y, Ding S-T, Tu P-A, Chen RS, Lin D-Y, Lin E-C, Wang P-H. 2018. Population structure and phylogenetic analysis of laboratory rabbits in Taiwan based on microsatellite markers. WRS. 26:57. DOI:10.4995/ wrs.2018.7362.

Loukovitis D, Szabó M, Chatziplis D, Monori I, Kusza S. 2023. Genetic diversity and substructuring of the Hungarian merino sheep breed using microsatellite markers. Animal Biotechnol. 34:1701-1709. DOI:10.1080/10495398.2 022.2042307.

Ma Q-z, Wu B, Jiang J-p, Song Z-b. 2020. Genetic characterization of selected domestic populations of channel catfish (Ictalurus punctatus) using microsatellites. Pak J Zool. 52:1683. DOI:10.17582/j ournal.pjz/20190422010420.

Mapiye C, Chikwanha OC, Chimonyo M, Dzama K. 2019. Strategies for sustainable use of indigenous cattle genetic resources in Southern Africa. Diversity. 11:214. DOI:10.3390/d11110214.

Mohamed E, Abdelfattah M. 2018. Genetic diversity assessment among six rabbit breeds using RAPD and SRAP markers. Egypt J Genet Cytol. 47.

Mostafa AR, Emam AM, Dorina M, Mohamed S, Ayman A, Monica M. 2020. Rabbits meat production in Egypt and its impact on food security, small holders income and economy. ARTOAJ. 24:81-85. DOI:10.19080/ARTOAJ .2020.22.556251.

Omotoso A, Olowofeso O, Wheto M, Sogunle O, Olufowobi O, Tor E. 2019. Genetic variation amongst four rabbit populations in Nigeria using microsatellite marker. Nigerian J Anim Sci. 21:37-44.

Pavlova A, Beheregaray LB, Coleman R, Gilligan D, Harrisson KA, Ingram BA, Kearns J, Lamb AM, Lintermans M, Lyon J, Nguyen TTT, Sasaki M, Tonkin Z, Len JDL, Sunnucks P. 2017. Severe consequences of habitat fragmentation on genetic diversity of an endangered australian freshwater fish: A call for assisted gene flow. Evol Appl. 10:531-550. DOI:10.1111/eva.12484.

Peakall R, Smouse PE. 2006. Genalex 6: Genetic analysis in excel. Population genetic software for teaching and research. J Mol Ecol notes. 6:288-295. DOI:10.1111 /j.1471-8286.2005.01155.x.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genet. 155:945-959. DOI:10.1093/genetics/155.2.945.

R Core Development Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (AUS).

Roden SE, Horne JB, Jensen MP, Fitzsimmons NN, Balazs GH, Farman R, Cruce Horeg J, Hapdei J, Heidemeyer M, Jones TT et al. 2023. Population structure of pacific green turtles: A new perspective from microsatellite dna variation. Front Mar Sci. 10. DOI:10.3389/fmars. 2023.1116941.

Teixeira JC, Huber CD. 2021. The inflated significance of neutral genetic diversity in conservation genetics. Proceedings of the National Academy of Sciences. 118:e2015096118. DOI:10.1073/pnas.2015096118.

Vajed Ebrahimi MT, Mohammadabadi M, Esmailizadeh A. 2017. Using microsatellite markers to analyze genetic diversity in 14 sheep types in Iran. AAB. 60:183-189. DOI:10.5194/aab-60-183-2017.

Refbacks

  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.