Characterization of Protein Degradation in Tropical Dairy Feedstuff Using the In Sacco Method

Idat Galih Permana, Annisa Rosmalia, Sari Filza Izzati Rahmat, Despal Despal, Rika Zahera

Abstract

A study was conducted to determine the protein degradation characteristics of 27 tropical feedstuffs for dairy rations.  Twenty-two tropical feedstuffs were grouped into A1 (local low fiber and low protein sources: corn, rice bran, cassava, cassava waste, wheat, pollard), A2 (local low fiber and low protein sources: palm kernel meal, tofu waste, tempe waste), and A3 (local high fiber sources: acacia, alfalfa, narra, gliricidia, indigofera, calliandra, bauhinia, leucaena, albizia, agati, piper, moringa, jack leaves), and compared to A4 (imported low fiber high protein sources: soybean, roasted soybean, DDGS, CGM, CGF) using the in sacco method.  The study revealed that A1, A2, and A3 had lower protein content but higher crude fiber than A4.  Protein solubility (a) was higher in A1 and A2, while the potentially degraded fraction (b) was higher in A2 and A3.  A1 and A2 had higher RDP fractions than A3 and A4.  High RDP feedstuffs include pollard, wheat, soybean, CGF, tempe waste, alfalfa, gliricidia, indigofera, agati, and moringa.  In contrast, high RUP feedstuffs include corn, palm kernel meal, narra, calliandra, leucaena, albizia, tamarind, piper, jack leaves, roasted soybean, soybean meal, and CGM.  Tropical feedstuffs exhibit diverse protein degradation characteristics, making them valuable for strategic ration formulation in dairy cattle.

Keywords

Concentrate; Dairy Cattle; Forages; Rumen Degradable Protein; Rumen Undegradable Protein

Full Text:

PDF

References

Abdeltawab AM, Khattab MSA. 2018. Utilization of palm kernel cake as a ruminant feed for animal: A review. Asian J Biol Sci. 11:157–164. DOI:10.3923/ajbs.2018.157.164.

Abdulrazak SA, Fujihara T, Ondiek JK, Ørskov ER. 2000. Nutritive evaluation of some Acacia tree leaves from Kenya. Anim Feed Sci Technol. 85:89–98. DOI:10.1016/S0377-8401(00)00133-4.

Alam MR, Amin MR, Kabir AKMA, Moniruzzaman M, McNeill DM. 2007. Effect of tannins in Acacia nilotica, Alblzia procera, and Sesbanla aculeate foliage determined in vitro, in sacco, and in vivo. Asian Austral J Anim Sci. 20:220–228. DOI:10.5713/ajas.2007.220

AOAC. 2005. Official Methods of Analysis. 18th ed. Horwitz W, Latimer GW, editors. Gaithersburg, Maryland.

Bach A, Calsamiglia S, Stern MD. 2005. Nitrogen metabolism in the rumen. J Dairy Sci. 88:E9–E21. DOI:10.3168/jds.S0022-0302(05)73133-7.

Belachew Z, Yisehak K, Taye T, Janssens GPJ. 2013. Chemical composition and in sacco ruminal degradation of tropical trees rich in condensed tannins. Czech J Anim Sci. 58:176–192. DOI:10.17221/6712-CJAS.

Broderick GA, Wallace RJ, Ørskov ER. 1991. Control of rate and extent of protein degradation. In: Physiol Asp Dig Metab Ruminants. pp. 541–592. DOI:10.1016/b978-0-12-702290-1.50030-8.

Castro-Montoya J, Gownipuram R, Mendoza M, Solano N, López F, Dickhöfer U, Corea EE. 2019. Effects of feeding tropical forage legumes on nutrients digestibility, nitrogen partitioning and performance of crossbred milking cows. Anim Feed Sci Technol. 247:32–40. DOI:10.1016/j.anifeedsci.2018.10.017.

Chuzaemi S, Mashudi, Eryantristan H, Huda AN. 2020. Effect of pollard and soybean meal protected with condensed tannin in concentrate on in vitro gas production. In: IOP Conf Ser: Earth Environ Sci. 478(012053). DOI:10.1088/1755-1315/478/1/012053.

Daza J, Benavides D, Pulido R, Balocchi O, Bertrand A, Keim J. 2019. Rumen in vitro fermentation and in situ degradation kinetics of winter forage brassicas crops. Animals 9:1–14. DOI:10.3390/ani9110904.

Despal D, Alifianty OF, Pratama AP, Febrianti F, Evvyernie D, Wijayanti I, Nuraina N, Agustiyani I, Rosmalia A. 2022. In situ degradation of dairy cattle feedstuffs using reusable local nylon fabric bags. Vet World. 15:2234–2243. DOI: 10.14202/vetworld.2022.2234-2243.

Despal, Malyadi J, Destianingsih Y, Lestari A, Hartono H, Abdullah L. 2014. Seasonal feeding practice impact on lactating cow performances kept in Bogor lowland small enterprise dairy farming. In: Proc 16th AAAP Anim Sci Congr. Vol. II. Yogyakarta, Indonesia.

Dijkstra J, Forbes JM, France J. 2005. Quantitative Aspects of Ruminant Digestion and Metabolism. CABI.

Doiron K, Yu P, McKinnon JJ, Christensen DA. 2009. Heat-induced protein structure and subfractions in relation to protein degradation kinetics and intestinal availability in dairy cattle. J Dairy Sci. 92:3319–3330. DOI:10.3168/jds.2008-1946.

Elizalde JC, Merchen NR, Faulkner DB. 1999. In situ dry matter and crude protein degradation of fresh forages during the spring growth. J Dairy Sci. 82:1978–1990. DOI:10.3168/jds.S0022-0302(99)75434-2.

Evitayani, Warly L, Fariani A, Ichinohe T, Fujihara T. 2004. Seasonal changes in nutritive value of some grass species in West Sumatra, Indonesia. Asian Austral J Anim Sci. 17:1663–1668. DOI:10.5713/ajas.2004.1663.

Ferraretto LF, Crump PM, Shaver RD. 2013. Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis. J Dairy Sci. 96:533–550. DOI:10.3168/jds.2012-5932.

Fulkerson WJ, Neal JS, Clark CF, Horadagoda A, Nandra KS, Barchia I. 2007. Nutritive value of forage species grown in the warm temperate climate of Australia for dairy cows: Grasses and legumes. Livest Sci. 107:253–264. DOI:10.1016/j.livsci.2006.09.029.

Hall MB, Larson CC, Wilcox CJ. 2010. Carbohydrate source and protein degradability alter lactation, ruminal, and blood measures. J Dairy Sci. 93:311–322. DOI:10.3168/jds.2009-2552.

Herrera-Saldana RE, Huber JT, Poore MH. 1990. Dry matter, crude protein, and starch degradability of five cereal grains. J Dairy Sci. 73:2386–2393. DOI:10.3168/jds.S0022-0302(90)78922-9.

Hristov AN, Bannink A, Crompton LA, Huhtanen P, Kreuzer M, McGee M, Nozière P, Reynolds CK, Bayat AR, Yáñez-Ruiz DR, Dijkstra J, Kebreab E, Schwarm A, Shingfield KJ, Yu Z. 2019. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. J Dairy Sci. 102:5811–5852. DOI:10.3168/jds.2018-15829.

Johansen M, Lund P, Weisbjerg MR. 2018. Feed intake and milk production in dairy cows fed different grass and legume species: A meta-analysis. Animal 12:66–75. DOI:10.1017/S1751731117001215.

Jouan J, Ridier A, Carof M. 2020. Legume production and use in feed: Analysis of levers to improve protein self-sufficiency from foresight scenarios. J Cleaner Prod. 274:123085.DOI:10.1016/j.jclepro.2020.123085.

Klevenhusen F, Zebeli Q. 2021. A review on the potentials of using feeds rich in water?soluble carbohydrates to enhance rumen health and sustainability of dairy cattle production. J Sci Food Agric. 101:5737–5746. DOI:10.1002/jsfa.11358.

Lee MA. 2018. A global comparison of the nutritive values of forage plants grown in contrasting environments. J Plant Res. 131:641–654. DOI:10.1007/s10265-018-1024-y.

Lee YH, Kim YI, Oh YK, Ahmadi F, Kwak WS. 2017. Yield survey and nutritional evaluation of garlic stalk for ruminant feed. J Anim Sci Technol. 59:1–7. DOI:10.1186/s40781-017-0147-3.

Li Q, Gao Y, Cao Y, Feng Z, Li J. 2011. Effects of rumen-degradable protein balance on rumen fermentation in continuous culture fermenters. Front Agric China. 5:598–604. DOI:10.1007/s11703-011-1138-7.

Martins CMMR, Fonseca DCM, Alves BG, Arcari MA, Ferreira GC, Welter KC, Oliveira CAF, Rennó FP, Santos MV. 2019. Effect of dietary crude protein degradability and corn processing on lactation performance and milk protein composition and stability. J Dairy Sci. 102:4165–4178. DOI:10.3168/jds.2018-15553.

Maska?ová I, Vajda V, Krempaský M, Buj?ák L. 2014. Rumen degradability and ileal digestibility of proteins and amino acids of feedstuffs for cows. Acta Vet Brno 83:225–231. DOI:10.2754/avb201483030225.

Menezes ACB, Valadares Filho SC, Carneiro Pacheco MV, Pucetti P, Pereira JMV, Rotta PP, Zanetti D, Silva BC, Costa E Silva LF, Detmann E, Neville TL, Caton JS. 2019. Single point ruminal incubation times necessary to estimate rumen degradable protein content in concentrate feeds. Transl Anim Sci. 3:1686–1690. DOI:10.1093/tas/txz058.

Micek P, S?ota K, Górka P. 2020. Effect of heat treatment and heat treatment in combination with lignosulfonate on in situ rumen degradability of canola cake crude protein, lysine, and methionine. Can J Anim Sci. 100:165–174. DOI:10.1139/cjas-2018-0216.

Moyo M, Nsahlai I. 2021. Consequences of increases in ambient temperature and effect of climate type on digestibility of forages by ruminants: A meta-analysis in relation to global warming. Animals 11:1–17. DOI:10.3390/ANI11010172.

NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th Ed. Washington DC: National Academy Press.

Orians GH. 2000. Biodiversity and ecosystem processes in tropical ecosystems. Rev Biol Trop. 48:297–303.

Ørskov ER, Mcdonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci. 92:499–503. DOI:10.1017/S0021859600063048.

Patton RA, Hristov AN, Lapierre H. 2014. Protein feeding and balancing for amino acids in lactating dairy cattle. Vet Clin Food Anim. 30:599–621. DOI:10.1016/j.cvfa.2014.07.005.

Petit HV, Tremblay GF., Tremblay E, Nadeau P. 2002. Ruminal biohydrogenation of fatty acids, protein degradability, and dry matter digestibility of flaxseed treated with different sugar and heat combinations. Can J Anim Sci. 82:241–250. DOI:10.4141/A01-083.

Piluzza G, Sulas L, Bullitta S. 2014. Tannins in forage plants and their role in animal husbandry and environmental sustainability: A review. Grass Forage Sci. 69:32–48. DOI:10.1111/gfs.12053.

Putri EM, Zain M, Warly L, Hermon H. 2019. In vitro evaluation of ruminant feed from West Sumatera based on chemical composition and content of rumen degradable and rumen undegradable proteins. Vet World. 12:1478–1483. DOI:10.14202/vetworld.2019.1478-1483.

Rastgoo M, Kazemi-Bonchenari M, HosseinYazdi M, Mirzaei M. 2020. Effects of corn grain processing method (ground versus steam-flaked) with rumen undegradable to degradable protein ratio on growth performance, ruminal fermentation, and microbial protein yield in Holstein dairy calves. Anim Feed Sci Technol. 269:114646. https://doi.org/10.1016/j.anifeedsci.2020.114646

Rosmalia A, Dewi NA, Permana IG, Despal. 2022. Reformulation of dairy cattle concentrate based on rumen degradable protein to undegradable protein ratio at different energy levels: in vitro study. In: IOP Conf Ser: Earth Environ Sci. 1020(1). DOI:10.1088/1755-1315/1020/1/012008.

Rosmalia, A, Permana, IG, Despal, Zahera R. 2021. Estimation rumen degradable protein of local feeds in dairy cattle using in sacco method. In: IOP Conf Ser: Earth Environ Sci. 883:012010. DOI:10.1088/1755-1315/883/1/012010.

Rosmalia A, Permana IG, Despal, Toharmat T. 2024. In sacco and in vitro evaluation of heating and formaldehyde treated protein feed. Am J Anim Vet Sci. 19(1): 74–85. DOI:10.3844/ajavsp.2024.74.85

Sahroni WP, Permana IG, Despal. 2021. Reformulation of dairy cow diets based on rumen degradable protein and total digestible nutrient with varying levels on in vitro fermentability and digestibility. In: IOP Conf Ser: Earth Environ. Sci. 888 012075. DOI:10.1088/1755-1315/888/1/012075.

Staack L, Della Pia EA, Jørgensen B, Pettersson D, Rangel Pedersen N. 2019. Cassava cell wall characterization and degradation by a multicomponent NSP-targeting enzyme (NSPase). Sci Rep. 9:1–11. DOI:10.1038/s41598-019-46341-2.

Tahuk PK, Baliarti E, Budhi, SPS, Panjono P. 2018. The effect of season on the feed quantity and quality and growth performance of male Bali cattle fattened in smallholder farms. Bul Peternak. 42:203–209. DOI:10.21059/buletinpeternak.v42i3.33058

Uddin MJ, Khandaker ZH, Khan MJ, Khan MMH. 2015. Dynamics of microbial protein synthesis in the rumen - A Review. Ann Vet Anim Sci. 2:116–131.

Van Emon ML, Loy DD, Hansen SL. 2015. Determining the preference, in vitro digestibility, in situ disappearance, and grower period performance of steers fed a novel algae meal derived from heterotrophic microalgae. J Anim Sci. 93:3121–3129. DOI:10.2527/jas.2014-8654.

Villalba JJ, Ates S, MacAdam JW. 2021. Non-fiber carbohydrates in forages and their influence on beef production systems. Front Sustain Food Syst. 5:1–12. DOI:10.3389/fsufs.2021.566338.

Wanapat M, Kang S. 2015. Cassava chip (Manihot esculenta Crantz) as an energy source for ruminant feeding. Anim Nutr 1:266–270. DOI:10.1016/j.aninu.2015.12.001.

Weiss W, Tebbe A. 2019. Estimating digestible energy values of feeds and diets and integrating those values into net energy systems. Transl Anim Sci. 3:953–961. DOI:tas/txy119.

Woods VB, Moloney AP, O'Mara FP. 2003. The nutritive value of concentrate feedstuffs for ruminant animals Part II: In situ ruminal degradability of crude protein. Anim Feed Sci Technol. 110:131–143. DOI:10.1016/S0377-8401(03)00222-0.

Yusiati LM, Kurniawati A, Hanim C, Anas MA. 2018. Protein binding capacity of different forages tannin. IOP Conf Ser: Earth Environ Sci. 119(1). DOI:10.1088/1755-1315/119/1/012007.

Zhao XH, Gong JM, Zhou S, Fu CB, Liu CJ, Xu LJ, Pan K, Qu MR. 2015. Effects of degradable protein and non-fibre carbohydrates on microbial growth and fermentation in the rumen simulating fermenter (Rusitec). Ital J Anim Sci. 14:220–225. DOI:10.4081/ijas.2015.3771.

Refbacks

  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



  • https://www.kiboshogirls.sc.tz/info/
  • jkr88
  • jkr88
  • https://legacy.stikesholistic.ac.id/file/
  • https://perpus.stiuda.ac.id/files/
  • https://infografis.bpsdmd.jatengprov.go.id/files/
  • https://msp.upr.ac.id/assets/data/
  • https://eprcug.org/word/
  • https://e-journal.stai-iu.ac.id/docs/
  • https://dkp.jatengprov.go.id/scatter/
  • https://kennebunkport.org/assets/
  • https://edu.ojs.co.id/thai/
  • https://laste.iatels.com/hitam/
  • https://kennebunkport.org/thailand/
  • https://sejurnal.com/
  • https://www.hinorajanyatruk.com/
  • https://joanlosangeles.org/
  • https://eprcug.org/
  • https://www.multiusos.net/data/
  • https://repository.stai-iu.ac.id/
  • https://sejurnal.com/
  • https://www.hinorajanyatruk.com/
  • https://pmb.stimbudibakti.ac.id/doc/
  • https://library.stimbudibakti.ac.id/source/
  • https://tracerstudy.sttpj.ac.id/data/
  • slot gacor/
  • slot gacor
  • https://renata.bpsdmd.jatengprov.go.id/public/data/
  • https://elibrary.staiduba.ac.id/
  • https://stikesphi.ac.id/file/
  • http://elearning.politeknikssr.ac.id/dosen/data/
  • https://sidamulya-sidareja.cilacapkab.go.id/
  • https://www.liga367.id/
  • https://liga367.shop/