Characterization of Protein Degradation in Tropical Dairy Feedstuff Using In Sacco Method

Idat Galih Permana, Annisa Rosmalia, Sari Filza Izzati Rahmat, Despal Despal, Rika Zahera

Abstract

A study to determine protein degradation characteristics of tropical dairy feedstuff's for dairy ration has been conducted using twenty-seven feedstuff. Twenty-two tropical feedstuffs were grouped into A1 (energy sources: corn, rice bran, cassava, cassava waste, wheat, and pollard), A2 (protein sources: palm kernel meal, tofu waste, and tempe waste), and A3 (forage sources: acacia, alfalfa, narra, gliricidia, indigofera, calliandra, bauhinia, leucaena, albizia, agati, piper, moringa, and jack leaves), were compared to A4 (imported sources: soybean, roasted soybean, DDGS, CGM, and CGF) for nutrient composition, protein degradability (RDP), and characteristics. Degradability studies were conducted using in sacco method. It showed that the protein content in A1, A2, and A3 was lower than A4 in opposite to crude fiber. Protein degradability characteristics of A1 and A2 showed a higher solubility fraction (a) than A3 and A4. While the potentially degraded fraction (b) in A1 and A4 were lower than A2 and A3. A1 and A2 have higher RDP fractions than A3 and A4. Pollard, wheat, soybean, CGF, tempe waste, alfalfa, gliricidia, indigofera, agati, and moringa can be grouped into high RDP feeds. The study showed that the right combination of tropical feedstuff could fulfill the RDP requirement of dairy cattle.

Keywords

concentrate; dairy cattle; forages; rumen degradable protein; rumen undegradable protein

References

Abdeltawab AM, Khattab MSA. 2018. Utilization of palm kernel cake as a ruminant feed for animal: A Review. Asian J Biol Sci. 11(4):157–164. DOI: https://doi.org/10.3923/ajbs.2018.157.164.

Abdulrazak SA, Fujihara T, Ondiek JK, Ørskov ER. 2000. Nutritive evaluation of some Acacia tree leaves from Kenya. Anim Feed Sci Technol. 85(1–2):89–98. DOI: https://doi.org/10.1016/S0377-8401(00)00133-4.

Alam MR, Amin MR, Kabir AKMA, Moniruzzaman M, McNeill DM. 2007. Effect of tannins in Acacia nilotica, Alblzia procera and Sesbanla acculeata foliage determined in vitro, in sacco and in vivo. Asian-Australasian J Anim Sci. 20(2):220–228. DOI: https://doi.org/10.5713/ajas.2007.220.

[AOAC] Association of Analytical Communities. 2005. Official methods of analysis. 18th ed. Maryland (USA): AOAC International.

Bach A, Calsamiglia S, Stern MD. 2005. Nitrogen metabolism in the rumen. J Dairy Sci. 88(S):E9–E21. DOI: https://doi.org/10.3168/jds.S0022-0302(05)73133-7.

Belachew Z, Yisehak K, Taye T, Janssens GPJ. 2013. Chemical composition and in sacco ruminal degradation of tropical trees rich in condensed tannins. Czech J Anim Sci. 58(4):176–192.

Broderick GA, Wallace RJ, Ørskov ER. 1991. Control of rate and extent of protein degradation. In: physiological aspects of digestion and metabolism in ruminants pp. 541–592. DOI: https://doi.org/10.1016/b978-0-12-702290-1.50030-8.

Castro-Montoya J, Gownipuram R, Mendoza M, Solano N, López F, Dickhöfer U, Corea EE. 2019. Effects of feeding tropical forage legumes on nutrients digestibility, nitrogen partitioning and performance of crossbred milking cows. Anim Feed Sci Technol. 247:32–40. DOI: https://doi.org/10.1016/j.anifeedsci.2018.10.017.

Chuzaemi S, Mashudi, Eryantristan H, Huda AN. 2020. Effect of pollard and soybean meal protected with condensed tannin in concentrate on in vitro gas production. IOP Conf Ser Earth Environ Sci. 478 012053. DOI: https://doi.org/10.1088/1755-1315/478/1/012053.

Daza J, Benavides D, Pulido R, Balocchi O, Bertrand A, Keim J. 2019. Rumen in vitro fermentation and in situ degradation kinetics of winter forage brassicas crops. Animals. 9(11):1–14. DOI: https://doi.org/10.3390/ani9110904.

Despal, Malyadi J, Destianingsih Y, Lestari A, Hartono H, Abdullah L. 2014. Seasonal feeding practice impact on lactating cow performances kept in bogor lowland small enterprise dairy farming. In: Proc 16th AAAP Anim Sci Congr. Vol. II. Yogyakarta, Indonesia. p. 2012–2015.

Dijkstra J, Forbes JM, France J. 2005. Quantitative aspects of ruminant digestion and metabolism. London (UK): CABI.

Doiron K, Yu P, McKinnon JJ, Christensen DA. 2009. Heat-induced protein structure and subfractions in relation to protein degradation kinetics and intestinal availability in dairy cattle. J. Dairy Sci. 92(7):3319–3330. DOI: https://doi.org/10.3168/jds.2008-1946.

Elizalde JC, Merchen NR, Faulkner DB. 1999. In situ dry matter and crude protein degradation of fresh forages during the spring growth. J Dairy Sci. 82(9):1978–1990. DOI: https://doi.org/10.3168/jds.S0022-0302(99)75434-2.

Ferraretto LF, Crump PM, Shaver RD. 2013. Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis. J Dairy Sci. 96(1):533–550. DOI: https://doi.org/10.3168/jds.2012-5932.

Fulkerson WJ, Neal JS, Clark CF, Horadagoda A, Nandra KS, Barchia I. 2007. Nutritive value of forage species grown in the warm temperate climate of Australia for dairy cows: Grasses and legumes. Livest Sci. 107(2–3):253–264. DOI: https://doi.org/10.1016/j.livsci.2006.09.029.

Hall MB, Larson CC, Wilcox CJ. 2010. Carbohydrate source and protein degradability alter lactation, ruminal, and blood measures. J Dairy Sci. 93:311–322. DOI: https://doi.org/10.3168/jds.2009-2552.

Herrera-Saldana RE, Huber JT, Poore MH. 1990. Dry matter, crude protein, and starch degradability of five cereal grains. J Dairy Sci. 73(9):2386–2393. DOI: https://doi.org/10.3168/jds.S0022-0302(90)78922-9.

Hristov AN, Bannink A, Crompton LA, Huhtanen P, Kreuzer M, McGee M, Nozière P, Reynolds CK, Bayat AR, Yáñez-Ruiz DR, et al. 2019. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. J Dairy Sci. 102(7):5811–5852. DOI: https://doi.org/10.3168/jds.2018-15829.

Johansen M, Lund P, Weisbjerg MR. 2018. Feed intake and milk production in dairy cows fed different grass and legume species: A meta-analysis. Animal. 12(1):66–75. DOI: https://doi.org/10.1017/S1751731117001215.

Jouan J, Ridier A, Carof M. 2020. Legume production and use in feed: Analysis of levers to improve protein self-sufficiency from foresight scenarios. J Clean Prod. 274:123085. DOI: https://doi.org/10.1016/j.jclepro.2020.123085.

Klevenhusen F, Zebeli Q. 2021. A review on the potentials of using feeds rich in waterâ€soluble carbohydrates to enhance rumen health and sustainability of dairy cattle production. J Sci Food Agric. 101:5737–5746. DOI: https://doi.org/10.1002/jsfa.11358.

Lee MA. 2018. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 131(4):641–654. DOI: https://doi.org/10.1007/s10265-018-1024-y.

Lee YH, Kim YI, Oh YK, Ahmadi F, Kwak WS. 2017. Yield survey and nutritional evaluation of garlic stalk for ruminant feed. J Anim Sci Technol. 59(1):1–7. DOI: https://doi.org/10.1186/s40781-017-0147-3.

Li Q, Gao Y, Cao Y, Feng Z, Li J. 2011. Effects of rumen-degradable protein balance on rumen fermentation in continuous culture fermenters. Front Agric China. 5(4):598–604. DOI: https://doi.org/10.1007/s11703-011-1138-7.

Martins CMMR, Fonseca DCM, Alves BG, Arcari MA, Ferreira GC, Welter KC, Oliveira CAF, Rennó FP, Santos M V. 2019. Effect of dietary crude protein degradability and corn processing on lactation performance and milk protein composition and stability. J Dairy Sci. 102(5):4165–4178. DOI: https://doi.org/10.3168/jds.2018-15553.

Maskaľová I, Vajda V, Krempaský M, Bujňák L. 2014. Rumen degradability and ileal digestibility of proteins and amino acids of feedstuffs for cows. Acta Vet Brno. 83(3):225–231. DOI: https://doi.org/10.2754/avb201483030225.

Menezes ACB, Valadares Filho SC, Carneiro Pacheco M V., Pucetti P, Pereira JMV, Rotta PP, Zanetti D, Silva BC, Costa E Silva LF, Detmann E, et al. 2019. Single point ruminal incubation times necessary to estimate rumen degradable protein content in concentrate feeds. Transl Anim Sci. 3(12):1686–1690. DOI: https://doi.org/10.1093/tas/txz058.

Micek P, Słota K, Górka P. 2020. Effect of heat treatment and heat treatment in combination with lignosulfonate on in situ rumen degradability of canola cake crude protein, lysine, and methionine. Can J Anim Sci. 100(1):165–174. DOI: https://doi.org/10.1139/cjas-2018-0216.

Moyo M, Nsahlai I. 2021. Consequences of increases in ambient temperature and effect of climate type on digestibility of forages by ruminants: A meta-analysis in relation to global warming. Animals. 11(1):1–17. DOI: https://doi.org/10.3390/ANI11010172.

[NRC] National Research Council. 2001. Nutrient requirements of dairy cattle. 7th Ed. Washington DC (USA): National Academy Press.

Orians GH. 2000. Biodiversity and ecosystem processes in tropical ecosystems. Rev Biol Trop. 48(2–3):297–303.

Ørskov ER, Mcdonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci. 92(2):499–503. DOI: https://doi.org/10.1017/S0021859600063048.

Patton RA, Hristov AN, Lapierre H. 2014. Protein feeding and balancing for amino acids in lactating dairy cattle. Vet Clin North Am - Food Anim Pract. 30(3):599–621. DOI: https://doi.org/10.1016/j.cvfa.2014.07.005.

Petit H V., Tremblay GF, Tremblay E, Nadeau P. 2002. Ruminal biohydrogenation of fatty acids, protein degradability, and dry matter digestibility of flaxseed treated with different sugar and heat combinations. Can J Anim Sci. 82(2):241–250. DOI: https://doi.org/10.4141/A01-083.

Piluzza G, Sulas L, Bullitta S. 2014. Tannins in forage plants and their role in animal husbandry and environmental sustainability: A review. Grass Forage Sci. 69(1):32–48. DOI: https://doi.org/10.1111/gfs.12053.

Putri EM, Zain M, Warly L, Hermon H. 2019. In vitro evaluation of ruminant feed from West Sumatera based on chemical composition and content of rumen degradable and rumen undegradable proteins. Vet World. 12(9):1478–1483. DOI: https://doi.org/10.14202/vetworld.2019.1478-1483.

Rastgoo M, Kazemi-Bonchenari M, HosseinYazdi M, Mirzaei M. 2020. Effects of corn grain processing method (ground versus steam-flaked) with rumen undegradable to degradable protein ratio on growth performance, ruminal fermentation, and microbial protein yield in Holstein dairy calves. Anim Feed Sci Technol. 269(3):114646. DOI: https://doi.org/10.1016/j.anifeedsci.2020.114646.

Rosmalia A, Dewi NA, Permana IG, Despal. 2022. Reformulation of dairy cattle concentrate based on rumen degradable protein to undegradable protein ratio at different energy levels: in vitro study. IOP Conf Ser Earth Environ Sci. 1020 012008. DOI: https://doi.org/10.1088/1755-1315/1020/1/012008.

Rosmalia A, Permana IG, Despal, Zahera R. 2021. Estimation rumen degradable protein of local feeds in dairy cattle using in sacco method. IOP Conf Ser Earth Environ Sci. 883 012010. DOI: https://doi.org/10.1088/1755-1315/883/1/012010.

Sahroni WP, Permana IG, Despal. 2021. Reformulation of dairy cow diets based on rumen degradable protein and total digestible nutrient with varying levels on in vitro fermentability and digestibility. In: IOP Conf Ser Earth Environ Sci. 888 012075. DOI: https://doi.org/10.1088/1755-1315/888/1/012075.

Staack L, Della Pia EA, Jørgensen B, Pettersson D, Rangel Pedersen N. 2019. Cassava cell wall characterization and degradation by a multicomponent NSP-targeting enzyme (NSPase). Sci Rep. 9(1):1–11. DOI: https://doi.org/10.1038/s41598-019-46341-2.

Uddin MJ, Khandaker ZH, Khan MJ, Khan MMH. 2015. Dynamics of microbial protein synthesis in the rumen - A Review. Ann Vet Anim Sci. 2(5):116–131.

Villalba JJ, Ates S, MacAdam JW. 2021. Non-fiber carbohydrates in forages and their influence on beef production systems. Front Sustain Food Syst. 5(3):1–12. DOI: https://doi.org/10.3389/fsufs.2021.566338.

Wanapat M, Kang S. 2015. Cassava chip (Manihot esculenta Crantz) as an energy source for ruminant feeding. Anim Nutr. 1(4):266–270. DOI: https://doi.org/10.1016/j.aninu.2015.12.001.

Woods VB, Moloney AP, O’Mara FP. 2003. The nutritive value of concentrate feedstuffs for ruminant animals Part II: In situ ruminal degradability of crude protein. Anim Feed Sci Technol. 110(1–4):131–143. DOI: https://doi.org/10.1016/S0377-8401(03)00222-0.

Yusiati LM, Kurniawati A, Hanim C, Anas MA. 2018. Protein binding capacity of different forages tannin. IOP Conf Ser Earth Environ Sci. 119 012007. DOI: https://doi.org/10.1088/1755-1315/119/1/012007.

Zhao XH, Gong JM, Zhou S, Fu CB, Liu CJ, Xu LJ, Pan K, Qu MR. 2015. Effects of degradable protein and non-fibre carbohydrates on microbial growth and fermentation in the rumen simulating fermenter (Rusitec). Ital J Anim Sci. 14(2):220–225. DOI: https://doi.org/10.4081/ijas.2015.3771.

Refbacks

  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



  • https://dkp.jatengprov.go.id/scatter/
  • https://kennebunkport.org/assets/
  • https://edu.ojs.co.id/thai/
  • https://laste.iatels.com/hitam/
  • https://kennebunkport.org/thailand/
  • https://sejurnal.com/
  • https://www.hinorajanyatruk.com/
  • https://joanlosangeles.org/
  • https://eprcug.org/
  • https://www.multiusos.net/data/
  • https://repository.stai-iu.ac.id/
  • https://sejurnal.com/
  • https://www.hinorajanyatruk.com/
  • https://pmb.stimbudibakti.ac.id/doc/
  • https://library.stimbudibakti.ac.id/source/
  • https://tracerstudy.sttpj.ac.id/data/
  • slot gacor/
  • slot gacor
  • https://renata.bpsdmd.jatengprov.go.id/public/data/
  • https://elibrary.staiduba.ac.id/
  • https://stikesphi.ac.id/file/
  • http://elearning.politeknikssr.ac.id/dosen/data/
  • https://sidamulya-sidareja.cilacapkab.go.id/
  • https://www.liga367.id/
  • https://liga367.shop/