Embryo Production and Development from Superovulated Donors in Double-Muscled Cattle and Their Crosses

Irma Irma Irma, Siti Darodjah Rasad, Nena Hilmia, Cece Sumantri

Abstract

Belgian Blue was introduced in Indonesia to increase the biodiversity of livestock genetic resources.  Belgian Blue was crossed with Ongole grade to increase the productivity of local cattle.  Therefore, this study evaluates reproduction traits, especially the response to superovulation, embryonic development, and quality of Belgian Blue, Ongole grade, and their crosses.  Estrous was synchronized with intravaginal progesterone Cue-Mate before artificial insemination (AI).  Superovulation was performed with Follicle Stimulating Hormone (FSH) intramuscularly with non-surgical embryo flushing.  In addition, embryo quality was assessed microscopically according to the International Embryo Transfer Society (IETS) criteria.  The study was performed in a quasi-experimental design, and data were analyzed with an analysis of variance.  After superovulation, oocytes/embryos were obtained from all donor breeds.  Oocyte and embryo production from Ongole grade and Belgian Blue differed at 11.83±1.91 and 4.86±1.33, respectively, P<0.05 (mean±SEM).  In addition, there are differences in recovery rate (89.63% vs. 75.35%) and fertilization rate (77.35% vs. 68.22%) between Ongole grade and Belgian Blue, respectively (P<0.05).  There is no difference in embryo development quality and proportion of transferable embryos between Ongole grade, Belgian Blue, and their crosses.  This study concluded that the cross-bred Belgian Blue x Ongole donor had identical oocyte and embryo production, recovery rate, fertilization rate, and degenerative embryos compared to its purebred.

Keywords

Cattle; Embryo Flushing; In Vivo; Pre-implantation; Superovulation

Full Text:

PDF

References

Bó GA, Mapletoft RJ. 2013. Evaluation and classification of bovine embryos. Anim Reprod. 10:344–348.

Bunning H, Wall E, Chagunda MGG, Banos G, Simm G. 2019. Heterosis in cattle cross-breeding schemes in tropical regions: Meta-analysis of effects of breed combination, trait type, and climate on level of heterosis. J Anim Sci. 97:29–34. DOI:10.1093/jas/sky406.

Center K, Dixon D, Looney C, Rorie R. 2018. Anti-Mullerian Hormone and follicle counts as predictors of superovulatory response and embryo production in beef cattle. Adv Reprod Sci. 6:22–33.

Chu Y-L, Xu Y-R, Yang W-X, Sun Y. 2018. The role of FSH and TGF-β superfamily in follicle atresia. Aging (Albany NY). 10:305. DOI:10.18632/aging.101391.

Coffey E, Horan B, Evans R, Berry D. 2016. Milk production and fertility performance of Holstein, Friesian, and Jersey purebred cows and their respective crosses in seasonal-calving commercial farms. J Dairy Sci. 99:5681–5689. DOI:10.3168/jds.2015-10530.

Darlian F, Susilowati T, Wahjuningsih S. 2021. The successful rate of embryo production in Belgian Blue cross-bred cattle. In: Int Conf Innov Anim Sci. p. 101–111.

Garcia SM, Lunardelli PA, Ancioto KL, Oliveira EC de, Bergamo LZ, Fonseca A, Zangirolamo, Seneda MM. 2020. Effect of the antral follicle count of Bos taurus × Bos indicus dairy cows on in vitro embryo production. SEMINA:Ciencias Agrarias. 44:2171–2178. DOI:10. 5433/1679-0359.2020v41n5supl1p2171

Gomez E, Salvetti P, Gatien J, Munoz M, Martin-Gonzalez D, Carrocera S, Goyache F. 2020. Metabolomic Profiling of Bos taurus Beef, Dairy, and Cross-bred Cattle: A Between-Breeds Meta-Analysis. J Agric Food Chem. 68:8732–8743.

Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E. 2014. Genome activation in bovine embryos: Review of the literature and new insights from RNA sequencing experiments. Anim Reprod Sci. 149:46–58. DOI:10.1016/j.anireprosci.2014.05.016.

Guerreiro B, Batista E, Vieira L, Sa Filho M, Rodrigues C, Castro Netto A, Silveira C, Bayeux B, Dias E, Monteiro F, et al. 2014. Plasma anti-mullerian hormone: an endocrine marker for in vitro embryo production from Bos taurus and Bos indicus donors. Domest Anim Endocrinol. 49:96–104. DOI:10.1016/j.domaniend.2014. 07.002.

Imron M. 2016. Respon superovulasi dengan penyuntikan tunggal FSH dalam ruang epidural berbasis pertumbuhan gelombang folikel pada sapi Peranakan Ongole. Bogor (Indones): IPB University.

Jakaria J, Ladhunka Nur Aliyya W, Ismail R, Yuni Siswanti S, Fakhrul Ulum M, Priyanto R. 2021. Discovery of SNPs and indel 11-bp of the myostatin gene and its association with the double-muscled phenotype in Belgian blue cross-bred cattle. Gene. 784:145598. DOI:10.1016/j.gene. 2021.145598.

Jaton C, Koeck A, Sargolzaei M, Malchiodi F, Price C, Schenkel F, Miglior F. 2016. Genetic analysis of superovulatory response of Holstein cows in Canada. J Dairy Sci. 99:3612-3623. DOI:10.3168/jds.2015-10349.

Jemal H, Lemma A, Degefa T. 2021. Variations in responses to the superovulatory hormone doses using cross bred HF dairy cows in Ethiopia. World Sci News. 154:66–75.

Jodiansyah S, Imron M, Sumantri C. 2013. Tingkat respon superovulasi dan produksi embrio in vivo dengan sinkronisasi CIDR (Controlled Internal Drug Releasing) pada sapi donor Simmental. J Ilmu Prod Teknol Has Peternak. 1:184–190. DOI:10.29244/jipthp.1.3.184-190.

Kirkpatrick DF. 2017. Cross-breeding in beef cattle. Knoxville (USA): University of Tennessee.

de Lacerda I, Dodeb M, Limac M, Guerrac B, Costac E, Moreiraa G, Carvalhoa J. 2020. Cattle breed affects in vitro embryo production in a large-scale commercial program on dairy farms. Livest Sci. 240:104135. DOI:10. 1016/j.livsci.2020.104135.

Landry D, Bellefleur A-M, Labrecque R, Grand F-X, Vigneault C, Blondin P, Sirard M-A. 2016. Effect of cow age on the in vitro developmental competence of oocytes obtained after FSH stimulation and coasting treatments. Theriogenology. 86:1240–1246. DOI:10.1016/j.therioge nology.2016.04.064.

Latham K. 2015. Endoplasmic reticulum stress signaling in mammalian oocytes and embryos: life in balance. Int Rev Cell Mol Biol. 316:227-265. DOI:10.1016/bs.ircmb. 2015.01.005.

Leroy JLMR, Opsomer G, De Vliegher S, Vanholder T, Goossens L, Geldhof A, Bols PEJ, De Kruif A, Van Soom A. 2005. Comparison of embryo quality in high-yielding dairy cows, in dairy heifers and in beef cows. Theriogenology. 64:2022–2036. DOI:10.1016/j.the riogenology.2005.05.003

Lonergan P, Fair T, Forde N, Rizos D. 2016. Embryo development in dairy cattle. Theriogenology. 86:270–277. DOI:10.1016/j.theriogenology.2016.04.040.

Luo S, Mao C, Lee B, Lee A. 2006. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol. 26:5688–5697. DOI:10.1128/MCB .00779-06.

Madalena FE, Toledo-Alvarado H, Cala-Moreno N. 2015. Animals that Produce Dairy Foods: Bos indicus breeds and bos indicus × bos taurus crosses. Encycl Dairy Sci Third Ed. 1:30–47. DOI:10.1016/b978-0-08-100596-5.00619-3.

Makarevich A, Stadnik L, Kubovicova E, Hegedusova Z, Holasek R, Louda F, Beran J, Nejdlova M. 2016. Quality of pre-implantation embryos recovered in vivo from dairy cows in relation to their body condition. Zygote.:378–388. DOI:10.1017/S0967199415000295.

Marsico T, Camargo J, Valente R, Sudano M. 2019. Embryo competence and cryosurvival: Molecular and cellular features. Anim Reprod. 16:423–439. DOI:10.21451/ 1984-3143-AR2019-0072.

Marsico T, de Sousa Sales J, Ferreira C, Sudano M, Viana J, de Almeida Camargo L, Eberlin M, Seneda M, Baruselli P. 2021. Characteristic MALDI-MS lipid profiles of Gir, Holstein and cross-bred (Gir x Holstein) oocytes recovered by ovum pick-up. Livest Sci. 243:104380. DOI:10.1016/j.livsci.2020.104380.

Naranjo-Chacon F, Montiel-Palacios F, Canseco-Sedano R, Ahuja-Aguirre C. 2019. Embryo production in middle-aged and mature Bos taurus× Bos indicus cows induced to multiple ovulation in a tropical environment. Trop Anim Health Prod.:2641–2644. DOI:10.1007/s11250-019-01975-2.

O'Callaghan E, Sanchez J, McDonald M, Kelly A, Hamdi M, Maicas C, Fair S, Kenny D, Lonergan P. 2021. Sire contribution to fertilization failure and early embryo survival in cattle. J Dairy Sci. 104:7262–7271. DOI:10. 3168/jds.2020-19900

Oliveira C, Serapiao R, Camargo A, de Freitas C, Iguma L, Carvalho B, Camargo L, Oliveira L, Verneque R. 2019. Oocyte origin affects the in vitro embryo production and development of Holstein (Bos taurus taurus) - Gyr (Bos taurus indicus) reciprocal cross embryos. Anim Reprod Sci. 209:106165. DOI:10.1016/j.anireprosci.2019. 106165.

Ordonezâ€Leon E, Merchant H, Medrano A, Kjelland M, Romo S. 2014. Lipid droplet analysis using in vitro bovine oocytes and embryos. Reprod Domest Anim. 49(2):306–314. DOI:10.1111/rda.12275.

Peralta-Torres J, Ake-Lopez J, Segura-Correa J, Ake-Villanueva J. 2017. Effect of season on follicular population, quality and nuclear maturation of bovine oocytes under tropical conditions. Anim Reprod Sci. 187:47–53. DOI:10.1016/j.anireprosci.2017.10.004.

Porto-Neto L, Reverter A, Prayaga K, Chan E, Johnston D, Hawken R, Fordyce G, Garcia J, Sonstegard T, Bolormaa S. 2014. The genetic architecture of climatic adaptation of tropical cattle. PLoS One. 9:e113284. DOI:10.1371 %2Fjournal.pone.0113284

Redhead A, Siew N, Lambie N, Carnarvon D, Ramgattie R, Knights M. 2018. The relationship between circulating concentration of AMH and LH content in the follicle stimulating hormone (FSH) preparations on follicular growth and ovulatory response to superovulation in water buffaloes. Anim Reprod Sci. 188:66–73. DOI:10.1016 /j.anireprosci.2017.11.010.

Residiwati G, Tuska H, Dolatabad N-A, Sidi S, Van Damme P, Pavani K, Pascottini O, Opsomer G, Van Soom A. 2020. ross-breeding effect of double-muscled cattle on in vitro embryo development and quality. Reprod Biol. 20:288–292. DOI:10.1016/j.repbio.2020.07.007.

Sales J, Dias L, Viveiros A, Pereira M, Souza J. 2008. Embryo production and quality of Holstein heifers and cows supplemented with β-carotene and tocopherol. Anim Reprod Sci. 106:77–89. DOI:10.1016/j.anireprosci. 2007.04.001.

Sales J, Iguma L, Batista R, Quintao C, Gama M, Freitas C, Pereira M, Camargo L, Viana J, Souza J, PS B. 2015. Effects of a high-energy diet on oocyte quality and in vitro embryo production in Bos indicus and Bos taurus cows. J Dairy Sci. 9:3086–3099. DOI:DOI:10.3168 /jds.2014-8858.

Sartori R, Prata A, Figueiredo A, Sanches B, Pontes G, Viana J, Pontes J, Vasconcelos J, Pereira M, Dode M. 2016. Update and overview on assisted reproductive technologies (ARTs) in Brazil. Anim Reprod. 13:300–312. DOI:10.21451/1984-3143-AR873.

Silvaâ€Santos K, Santos G, Koetz Junior C, Morotti F, Siloto L, Marcantonio T, Urbano M, Oliveira R, Lima D, Seneda M. 2014. Antral follicle populations and embryo production in vitro and in vivo of Bos indicus–taurus donors from weaning to yearling ages. Reprod Domest Anim. 49:228–232. DOI:10.1111/rda.12255.

Stringfellow D, Givens M. 2010. A procedural guide and general information for the use of embryo transfer technology emphasizing sanitary procedure. In: Stringfellow DA, Givens MD. Manual of the international embryo transfer society: a procedural guide

and general. 4th editon. Illionis (USA): International Embryo Transfer Society.

Sudano M, Caixeta E, Paschoal D, Martins A, Machado R, Buratini J, Landim-Alvarenga F. 2014. Cryotolerance and global gene-expression patterns of Bos taurus indicus and Bos taurus taurus in vitro-and in vivo-produced blastocysts. Reprod Fertil Dev. 26:1129–1141. DOI:10.1071/RD13099.

Sudano M, Santos V, Tata A, Ferreira C, Paschoal D, Machado R, Buratini J, Eberlin M, Landim-Alvarenga F. 2012. Phosphatidylcholine and sphingomyelin profiles vary in Bos taurus indicus and Bos taurus taurus in vitro-and in vivo-produced blastocysts. Biol Reprod. 87:130–131. DOI:10.1095/biolreprod.112.102897.

Sukirman I, Sukmawati E, Rasad S, Solihati N. 2019. The influence of breed and type of extender on the quality of bull semen. J Anim Prod. 21:64–70. DOI:10.20884/ 1.jap.2019.21.2.641

Sumantri C, Imron M, Sugyono, Andreas E, Misrianti R, Ishak A. 2011. Growth hormone gene family (GH, GHR, GHRH and Pit-1) polymorphisms and its association with superovulation response, ovulation rate, fertilization rate and embryo quality in Embryo Transfer Station (BET) of Cipelang. JITV. 16:126–139.

de Vasconcelos G, da Cunha E, Maculan R, Sanchez Viafara J, Barbalho Silva A, Souza Batista A, Viana Silva J, JC de S. 2020. Effects of vulvar width and antral follicle count on oocyte quality, in vitro embryo production and pregnancy rate in Bos taurus taurus and Bos taurus indicus cows. Anim Reprod Sci. 217:106357. DOI:10. 1016/j.anireprosci.2020.106357.

Viana JHM. 2021. Statistics of embryo production and transfer in domestic farm animal. Embryo Technol Newsl.:1–15.

Vieira L, Rodrigues C, Mendanha M, Sa Filho M, Sales J, Souza A, Santos J, Baruselli P. 2014. Donor category and seasonal climate associated with embryo production and survival in multiple ovulation and embryo transfer programs in Holstein cattle. Theriogenology. 82:204–212. DOI:10.1016/j.theriogenology.2014.03.018.

Visintin J, Martins J, Bevilacqua E, Mello M, Nicacio A. 2002. Cryopreservation of bos taurus vs bos indicus embryos: Are they really different?. Theriogenology. 57:345–359. DOI:10.1016/s0093-691x(01)00675-6.

Weaber RL. 2015. Cross-breeding strategies: Including terminal vs maternal Crosses. In: Proc Range Beef Cow Symp XXIV. Colorado (USA): University of Nebraska. p. 117–130.

Refbacks

  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.