Rumen Fermentation Profiles of Protein-Energy Synchronization Index-Based Ration: an In Vitro Study
Abstract
The study examined the effect of protein-energy synchronization (PES) index-based rations on the rumen fermentation profile. The material used was the Jawa Randu goat's rumen fluid, collected soon after the goat was slaughtered. The treatment ration consisted of elephant grass, lamtoro (Leucaena leucocephala), coconut meal, tofu waste, bran, cassava waste, and mineral mix arranged based on the PES index of each feed ingredient. The research was conducted in vitro using a completely randomized design (CRD). The treatment consisted of 4 PES indexes, namely 0.55 (R1); 0.6 (R2); 0.65 (R3); 0.7 (R4), and each had 5 replications. Data were analyzed by ANOVA and orthogonal polynomials (OP). The results of the ANOVA showed that the PES index did not affect the production of acetate (C2) and butyrate (C4) but had a highly significant effect on dry matter digestibility (DMD), organic matter digestibility (OMD), pH, a total of volatile fatty acids (VFA), propionate (C3), C2:C3 ratio, methane (CH4), ammonia (NH3), and microbial protein synthesis (MPS). The analysis of OP showed a quadratic effect on all variables with the equation Y= - 81.601X2 + 375.04X – 310.78 (DMD), Y= -433.69X2 + 522.69X – 128.75 (OMD), Y=-44X2 + 54.04X – 9.9 (pH), Y= -2160X2 + 2576.8X – 604.2 (VFA Total), Y= -481.8X2 + 585.01X – 143.45 (C3), Y = 50.93X2 – 60.177X + 21.067 (C2:C3), Y = 202.45X2 – 223.18X + 103.41 (CH4), Y= 436X2 – 552.28X + 181.08 (NH3), dan Y= -1012X2 + 1260X – 311.64 (MPS). Protein-energy synchronization (PES) index of 0.6 achieved the best rumen fermentability. The formulation of the PES index-based ration of 0.6 had the most effective compared to other indexes based on the high of propionate, the lowest methane, the lowest NH3, and the best microbial protein synthesis. The ration with an index of 0.6 is composed of 30% elephant grass, 30% Leucaena leucocephala, 10% coconut meal, 10% tofu waste, 10% rice brand, 9% cassava waste, and 1% mineral mix.
Keywords
Full Text:
PDFReferences
Aling C, Tuturoong RAV, Tulung YLR, Waani MR. 2020. Kecernaan serat kasar dan BETN (bahan ekstrak tanpa nitrogen) ransum komplit berbasis tebon jagung pada sapi Peranakan Ongole. ZOOTEC. 40:428. DOI:10.35 792/zot.40.2.2020.28366.
AOAC. 2005. Official method of Analysis. 18th ed. Washington DC (USA): Association of Officiating Analytical Chemists.
Ariani N, Astuti K, Putra A. 2015. Uji aktivitas vermisidal ekstrak etanol biji Lamtoro (Leucaena leucocephala (Lam.) de Wit) pada cacing gelang babi (Ascaris suum Goeze) secara in vitro. 4:34–37. DOI:10.24843/ JCHEM.2018.v12.i01.p05.
Arias RA, Guajardo G, Kunick S, Alvarado-Gilis C, Keim JP. 2020. Effect of two nutritional strategies to balance energy and protein supply in fattening Heifers on performance, ruminal metabolism, and carcass characteristics. Animals. 10:852. DOI:10.3390/ani10050 852.
Cahyaningtyas Z, Kusmartono K, Marjuki M. 2019. Sintesis Protein mikroba rumen dan produksi gas in vitro pakan yang ditambah urea molasses block (UMB) yang mengandung ragi tape sebagai sumber probiotik. J Nutr Ternak Trop. 2:38–46. DOI:10.21776/ub.jnt.2019. 002.02.2.
Chumpawadee C, Sommart K, Vongpralub T, Pattarajinda V. 2005. Effects of synchronizing the rate of dietary energy and nitrogen release on ruminal fermentation, microbial protein synthesis, blood urea nitrogen and nutrient digestibility in beef cattle. Asian-Aust J Anim Sci. 19:181–188. DOI:10.5713/ajas.2006.181.
Franco M de O, Detmann E, de Campos Valadares Filho S, Batista ED, de Almeida Rufino LM, Medrado Barbosa M, Lopes AR. 2016. Intake, digestibility, and rumen and metabolic characteristics of cattle fed low-quality tropical forage and supplemented with nitrogen and different levels of starch. Asian-Australas J Anim Sci. 30:797–803. DOI:10.5713/ajas.16.0629.
Hartono R, Fenita Y, Sulistyowati E. 2016. Uji in vitro kecernaan bahan kering, bahan organik dan produksi N-NH3 pada kulit buah durian (Durio zibethinus) yang difermentasi jamur tiram putih (Pleurotus ostreatus) dengan perbedaan waktu inkubasi. J Sain Peternak Indones. 10:87–94. DOI:10.31186/jspi.id.10.2.87-94.
Hermon H, Suryahadi S, Wiryawan K, Hardjosoewignjo S. 2008. Synchronization ratio of N-Protein and energy supplies as a basis for diet formulation in ruminant. Media Peternak. 31:186–194. DOI:10.5398/medpet. v31i3.1068.
Ifani M, Rimbawanto EA, Suhartati FM. 2021. Effect of protection of soybean meal using mahogany leaf extract in ruminant diet on rumen fermentation products. JITV. 26:96. DOI:10.14334/jitv.v26i3.2829.
Indah AS, Permana IG, Despal. 2020. Determination dry matter digestibility of tropical forage using nutrient compisition. In: IOP Conf Ser Earth Environ Sci. 484. p. 012113. DOI:10.1088/1755-1315/484/1/012113.
Isipato M, Dessì P, Sánchez C, Mills S, Ijaz UZ, Asunis F, Spiga D, De Gioannis G, Mascia M, Collins G, et al. 2020. Propionate production by bioelectrochemically-assisted lactate fermentation and simultaneous CO2 recycling. Front Microbiol. 11:599438. DOI:10.3389/ fmicb.2020.599438.
Jasin I, Sugiyono S. 2014. Pengaruh penambahan tepung gaplek dan isolat bakteri asam laktat dari cairan rumen sapi PO terhadap kualitas silase rumput gajah (Pennisetum purpureum). J Peternak Indones. 16:96–103. DOI:10.25077/jpi.16.2.96-103.2014.
Kim Y-H, Nagata R, Ohkubo A, Ohtani N, Kushibiki S, Ichijo T, Sato S. 2018. Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet. BMC Vet Res. 14:310. DOI:10.1186/s12917-018-1637-3.
Kitkas GC, Valergakis GE, Kritsepi-Konstantinou M, Gelasakis AI, Katsoulos PD, Kalaitzakis E, Panousis NK. 2022. Association between Ruminal pH and Rumen Fatty Acids Concentrations of Holstein Cows during the First Half of Lactation. Ruminants. 2(4):382–389. https://doi.org/10.3390/ruminants2040026
Li MM, White RR, Guan LL, Harthan L, Hanigan MD. 2021. Metatranscriptomic analyses reveal ruminal pH regulates fiber degradation and fermentation by shifting the microbial community and gene expression of carbohydrate-active enzymes. Anim Microbiome. 3:32. DOI:10.1186/s42523-021-00092-6.
Liu K, Zhang Y, Yu Z, Xu Q, Zheng N, Zhao S, Huang G, Wang J. 2021. Ruminal microbiota–host interaction and its effect on nutrient metabolism. Anim Nutr. 7:49–55. DOI:10.1016/j.aninu.2020.12.001.
Mahyuddin P. 2008. Relationship between chemical component and in vitro digestibility of tropical grasses. Hayati J Biosci. 15:85–89. DOI:10.4308/hjb.15.2.85.
Matsui M, Wada H, Kotera K, Yasuhara A. 1992. Gas-Chromatographic determination of volatile fatty acids in aqueous samples by direct injection. J Environ Chem. 2:211–216. DOI:10.5985/jec.2.211.
Mitsumori M, Sun W. 2008. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Australas J Anim Sci. 21(1):144–154. DOI:10.5713/ajas.2008.r01.
Montoya-Flores MD, Molina-Botero IC, Arango J, Romano-Muñoz JL, Solorio-Sánchez FJ, Aguilar-Pérez CF, Ku-Vera JC. 2020. Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers. Animals. 10:300. DOI:10.3390/ani10020300.
Muchlas M, Kusmartono K, Marjuki M. 2014. Pengaruh penambahan daun pohon terhadap kadar VFA dan kecernaan secara in vitro ransum berbasis ketela pohon. J Ilmu-Ilmu Peternak. 24:8–19.
National Bureau of Standarts. 1967. Proceedings of the 1966 Standards Laboratory Conference. 291st ed. Woshington DC (USA): National Bureau of Standarts.
Orskov E, Ryle M. 1996. Energy nutrition in ruminant. United Kingdom: Elsevier Science Publisher.
Rahayu RI, Subrata A, Achmadi J. 2018. Fermentabilitas ruminal in vitro pada pakan berbasis jerami padi amoniasi dengan suplementasi tepung bonggol pisang dan molases. J Peternak Indones Indones J Anim Sci. 20:166. DOI:10.25077/jpi.20.3.166-174.2018.
Sinclair LA, Garnsworth PC, Newbold JR, Buttery PJ. 1993. Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in sheep. J Agric Sci. 120:251–263. DOI:10.1017/S002185960007430X.
Suhada AT, Nuswantara LK, Pangestu E, Wahyono F, Achmadi J. 2016. Effect of synchronization of carbohydrate and protein supply in the sugarcane bagasse-based diet on microbial protein synthesis in sheep. J Indones Trop Anim Agric. 41:135–144. DOI:10.14710/jitaa.41.3.135-144.
Susilo E, Nuswantara L, Pangestu E. 2019. Evaluasi bahan pakan hasil samping industri pertanian berdasarkan parameter fermentabilitas ruminal secara in vitro. J Sain Peternak Indones. 14.
Syamsi AN, Astuti TY, Soediarto P. 2018. Volatile fatty acids and methane profile of dairy cattle ruminal fluid was gived legumes in ration based on synchronization protein-energy index. Bul Peternak 42. DOI:10.21059/buletinpeternak.v42i4.33074.
Syamsi AN, Waldi L. 2021. Volatile fatty acids and methane production in dairy cow ration based on protein-energy synchronization index with a meals protein source. J Ilmu-Ilmu Peternak. 31:114–120. DOI:10.21776/ub. jiip.2021.031.02.04.
Tilley J, Terry R. 1963. A twoâ€stage technique for the in vitro digestion of forage crops. J Br Grassl Soc. 18:104–111.
Wahyuni I, Muktiani A, Christianto M. 2014. Penentuan dosis tanin dan saponin untuk defaunasi dan peningkatan fermentabilitas pakan. 3:133–140. DOI:10.20956/ jitp.v3i3.788.
Waldi L, Suhartati F, Suryapratama W. 2017. Pengaruh penggunaan bungkil kedelai dan bungkil kelapa dalam ransum berbasis indeks sinkronisasi energi dan protein terhadap sintesis protein mikroba rumen sapi perah. J Livest Sci Prod. 1:1–12. DOI:10.31002/jalspro.v1i1.446.
Yanuartono Y, Nururrozi A, Indarjulianto S, Purnamaningsih H. 2019. Peran Protozoa pada pencernaan ruminansia dan dampak terhadap lingkungan. Ternak Trop J Trop Anim Prod. 20:16–28. DOI:10.21776/ub.jtapro.2019.020.01.3.
Zhang J, Zheng N, Shen W, Zhao S, Wang J. 2020. Synchrony Degree of dietary energy and nitrogen release influences microbial community, fermentation, and protein synthesis in a rumen simulation system. Microorganisms. 8:231. DOI:10.3390/microorganisms8020231.
Zinn RA, Owens FN. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can J Anim Sci. 66:157–166. DOI: 10.4141/cjas86-017.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.