Protective Effects of Gallic Acid and Curcumin on Serum Levels of Hepatic Transaminases, Blood Plasma Parameters and Pituitary-testicular Hormones in Rats Treated Nickel Nanoparticles
Abstract
Nickel nanoparticles (NiNPs) have toxic effects on body cells due to the production of free radicals. The purpose of this research was to investigate the protective effects of Gallic acid (GA) and Curcumin (Cur) on hepatic transaminases, blood plasma parameters and pituitary-testicular hormones levels in NiNPs-treated rats. Seventy adult male Wistar rats were divided in 7 groups of 10 including control, Ni50 mg/kg, Ni50+GA150 mg/kg, Ni50+GA300 mg/kg, Ni50+Cur150 mg/kg, Ni50+Cur300 mg/kg and Ni50+GA300+CUR300 mg/kg. NiNPs, GA and Cur were administered orally by oral gavage for 28 days. At the last phase of the study, the samples of blood were taken directly from heart and serum levels of hepatic transaminases (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)), blood plasma parameters (Glucose, total protein (TP), bilirubin (Bil), albumin (Alb), creatinine (Cr), Blood urea nitrogen (BUN), triglyceride, cholesterol, HDL, LDL and alkaline phosphatase (ALP)) and pituitary-testicular hormones (FSH, LH, testosterone and dihydrotestosterone) were assessed. NiNPs administration increased serum levels of glucose, ALT, ALP, AST, Bil, BUN, Cr, triglyceride, cholesterol and LDL compared to the control group (p<0.05) and in contrast, it decreased serum levels of FSH, LH, testosterone, dihydrotestosterone, Alb, TP and HDL (p<0.05). However, co-administration of GA and Cur at doses of 300 ml/kg in NiNPs -treated rats improved all blood plasma parameters compared to the control group (p>0.05). The findings of this study suggest that co-administration of GA and Cur at a dose of 300 mg/kg can reduce and improve the damaging effects of NiNPs on blood plasma parameters, hepatic transaminases and pituitary-testicular hormones in adult rats.
Keywords
Full Text:
PDFReferences
Abarikwu SO, Durojaiye M, Alabi A, Asonye B, Akiri O. 2016. Curcumin protects against gallic acid-induced oxidative stress, suppression of glutathione antioxidant defenses, hepatic and renal damage in rats. Ren Fail. 38:321–329. DOI: 10.3109/0886022X.2015.1127743.
Abdel-Ghafarf O, Ali A, Soliman S. 2018. Protective effect of naringenin against isoniazid-induced adverse reactions in rats. Int J Pharmacol. 14:667–680. DOI: 10.3923/ijp.2018.667.680.
Abdulqadir SZ, Aziz FM. 2019. Hepatotoxicity of nickel nanoparticles in rats. Indian J Anim Res.(of). DOI: 10.18805/ijar.B-1100.
Abudayyak M, GuzelL E, Özhan G. 2020. Cytotoxic, genotoxic, and apoptotic effects of nickel oxide nanoparticles in intestinal epithelial cells. Turkish J Pharm Sci. 17:446–451. DOI: 10.4274/tjps.galenos. 2019.76376
Adedara IA, Farombi EO. 2013. Chemoprotective effects of kolaviron on ethylene glycol monoethyl ether-induced pituitary-thyroid axis toxicity in male rats. Andrologia. 45:111–119. DOI: 10.1111/j.1439-0272.2012.01321.x.
Ahmadvand H, Yalameha B, Adibhesami G, Nasri M, Naderi N, Babaeenezhad E, Nouryazdan N. 2019. The protective role of gallic acid pretreatment on renal ischemia-reperfusion injury in rats. Reports Biochem Mol Biol. 8:42–48.
Akbari G, Savari F, Mard SA, Rezaie A, Moradi M. 2019. Gallic acid protects the liver in rats against injuries induced by transient ischemia-reperfusion through regulating microRNAs expressions. Iran J Basic Med Sci. 22:439–444. DOI: 10.22038/ijbms.2018.31589. 7605
Ali AA-M. 2019. Evaluation of some biological, biochemical, and hematological aspects in male albino rats after acute exposure to the nano-structured oxides of nickel and cobalt. Environ Sci Pollut Res. 26:17407–17417. DOI: 10.1007/s11356-019-05093-2.
Ali AA-M, Mansour AB, Attia SA. 2021. The potential protective role of apigenin against oxidative damage induced by nickel oxide nanoparticles in liver and kidney of male Wistar rat, Rattus norvegicus. Environ Sci Pollut Res. 28:27577–27592. DOI: 10.1007/s11356-021-12632-3.
Alizadeh M, Kheirouri S. 2019. Curcumin reduces malondialdehyde and improves antioxidants in humans with diseased conditions: a comprehensive meta-analysis of randomized controlled trials. BioMedicine. 9:23. DOI: 10.1051/bmdcn/2019090423.
An X, Zhou A, Yang Y, Wang Y, Xin R, Tian C, Wu Y. 2016. Protective effects of gallic acid against NiSO4-induced toxicity through down-regulation of the Ras/ERK signaling pathway in Beas-2B cells. Med Sci Monit. 22:3446–3454. DOI: 10.12659/MSM.900460.
Bayramoglu G, Kurt H, Bayramoglu A, Gunes HV, Degirmenci İ, Colak S. 2015. Preventive role of gallic acid on hepatic ischemia and reperfusion injury in rats. Cytotechnology. 67:845–849. DOI: 10.1007/s10616-014-9724-1.
Coelho MR, Romi MD, Ferreira DMTP, Zaltman C, Soares-Mota M. 2020. The use of curcumin as a complementary therapy in ulCrive colitis: a systematic review of randomized controlled clinical trials. Nutrients. 12:2296. DOI: 10.3390/nu12082296.
Dludla P, Nkambule B, Jack B, Mkandla Z, Mutize T, Silvestri S, Orlando P, Tiano L, Louw J, Mazibuko-Mbeje S. 2018. Inflammation and oxidative stress in an obese state and the protective effects of gallic acid. Nutrients. 11:23. DOI: 10.3390/nu11010023.
Dumala N, Mangalampalli B, Kalyan Kamal SS, Grover P. 2018. Biochemical alterations induced by nickel oxide nanoparticles in female Wistar albino rats after acute oral exposure. Biomarkers. 23:33–43. DOI: 10.1080/1354750X.2017.1360943.
El-Borady OM, Othman MS, Atallah HH, Abdel Moneim AE. 2020. Hypoglycemic potential of selenium nanoparticles capped with polyvinyl-pyrrolidone in streptozotocin-induced experimental diabetes in rats. Heliyon. 6:e04045. DOI: 10.1016/j.heliyon.2020.e04 045.
Farashbandi AL, Shariati M, Mokhtari M. 2021. Comparing the Protective Effects of Curcumin and Ursodeoxycholic Acid after Ethanol-Induced Hepatotoxicity in Rat Liver. Ethiop J Health Sci. 31:673–682. DOI: 10.4314/ejhs.v31i3.25.
Forgacs Z, Massányi P, Lukac N, Somosy Z. 2012. Reproductive toxicology of nickel – Review. J Environ Sci Heal Part A. 47:1249–1260. DOI: 10.1080/10934 529.2012.672114.
Gallo A, Boni R, Buttino I, Tosti E. 2016. Spermiotoxicity of nickel nanoparticles in the marine invertebrate Ciona intestinalis (ascidians). Nanotoxicology. 10:1096–1104. DOI: 10.1080/17435390.2016.1177743.
Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. 2020. Nickel: human health and environmental toxicology. Int J Environ Res Public Health. 17:679. DOI: 10.3390/ijerph17030679.
Hashemzaei M, Tabrizian K, Alizadeh Z, Pasandideh S, Rezaee R, Mamoulakis C, Tsatsakis A, Skaperda Z, Kouretas D, Shahraki J. 2020. Resveratrol, curcumin and gallic acid attenuate glyoxal-induced damage to rat renal cells. Toxicol Reports. 7:1571–1577. DOI: 10.1016/j.toxrep.2020.11.008.
Hendi A. 2011. Silver nanoparticles mediate differential responses in some of liver and kidney functions during skin wound healing. J King Saud Univ - Sci. 23:47–52. DOI: 10.1016/j.jksus.2010.06.006.
Hsieh CL, Lin C-H, Chen KC, Peng C-C, Peng RY. 2015. The teratogenicity and the action mechanism of gallic acid relating with brain and cervical muscles.Ho Y-S, editor. PLoS One. 10:e0119516. DOI: 10.1371/journal. pone.0119516.
Hu W, Yu Z, Gao X, Wu Y, Tang M, Kong L. 2020. Study on the damage of sperm induced by nickel nanoparticle exposure. Environ Geochem Health. 42:1715–1724. DOI: 10.1007/s10653-019-00364-w.
Huang D-W, Chang W-C, Wu JS-B, Shih R-W, Shen S-C. 2016. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr Res. 36:150–160. DOI: 10.1016/j.nutres.2015.10.001.
Ilbey YO, Ozbek E, Cekmen M, Simsek A, Otunctemur A, Somay A. 2009. Protective effect of curcumin in cisplatin-induced oxidative injury in rat testis: mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways. Hum Reprod. 24:1717–1725. DOI: 10.1093/humrep/dep058.
Ispas C, Andreescu D, Patel A, Goia D V, Andreescu S, Wallace KN. 2009. Toxicity and developmental defects of different sizes and shape nickel nanoparticles in Zebrafish. Environ Sci Technol. 43:6349–6356. DOI: 10.1021/es9010543.
Jakubczyk K, Drużga A, Katarzyna J, Skonieczna-Żydecka K. 2020. Antioxidant potential of curcumin—a Meta-analysis of randomized clinical trials. Antioxidants. 9:1092. DOI: 10.3390/antiox9111092.
Jalali M, Mahmoodi M, Mosallanezhad Z, Jalali R, Imanieh MH, Moosavian SP. 2020. The effects of curcumin supplementation on liver function, metabolic profile and body composition in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 48:102283. DOI: 10.1016/j.ctim.2019.102283.
Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, Momtaz S, Abbasabadi Z, Rahimi R, Farzaei MH, Bishayee A. 2019. Pharmacological effects of gallic acid in health and disease: A mechanistic review. Iran J Basic Med Sci. 22:225–237.
Kong L, Tang M, Zhang T, Wang D, Hu K, Lu W, Wei C, Liang G, Pu Y. 2014. Nickel nanoparticles exposure and reproductive toxicity in healthy adult rats. Int J Mol Sci. 15:21253–21269. DOI: 10.3390/ijms151121253.
Liu G, Sun L, Pan A, Zhu M, Li Z, Wang Z, Liu X, Ye X, Li H, Zheng H, et al. 2015. Nickel exposure is associated with the prevalence of type 2 diabetes in Chinese adults. Int J Epidemiol. 44:240–248. DOI: 10.1093/ije/dyu200.
Marton LT, Pescinini-e-Salzedas LM, Camargo MEC, Barbalho SM, Haber JF dos S, Sinatora RV, Detregiachi CRP, Girio RJS, Buchaim DV, Cincotto dos Santos Bueno P. 2021. The effects of curcumin on diabetes mellitus: A systematic review. Front Endocrinol (Lausanne). 12:669448. DOI: 10.3389/fendo.2021. 669448/full.
Marzban A, Seyedalipour B, Mianabady M, Taravati A, Hoseini SM. 2020. Biochemical, Toxicological, and Histopathological outcome in rat brain following treatment with NiO and NiO nanoparticles. Biol Trace Elem Res. 196:528–536. DOI: 10.1007/s12011-019-01941-x
Mohamadpour M, Noorafshan A, Karbalay-Doust S, Talaei-Khozani T, Aliabadi E. 2017. Protective effects of curcumin co-treatment in rats with establishing chronic variable stress on testis and reproductive hormones. Int J Reprod Biomed. 15:447–452. DOI: 10.29252/ijrm. 15.7.447.
Moradi A, Abolfathi M, Javadian M, Heidarian E, Roshanmehr H, Khaledi M, Nouri A. 2021. Gallic acid exerts nephroprotective, anti-oxidative stress, and anti-inflammatory effects against diclofenac-induced renal injury in male rats. Arch Med Res. 52:380–388. DOI: 10.1016/j.arcmed.2020.12.005.
Najafi H, Changizi Ashtiyani S, Sayedzadeh SA, Mohamadi Yarijani Z, Fakhri S. 2015. Therapeutic effects of curcumin on the functional disturbances and oxidative stress induced by renal ischemia/reperfusion in rats. Avicenna J phytomedicine. 5:576–86.
Onwuemene NJ, Imafidon CE, Ayoka AO. 2019. Curcuma longa normalized cimetidineâ€induced pituitaryâ€testicular dysfunction: Relevance in nutraceutical therapy. Anim Model Exp Med. 2:191–200. DOI: 10.1002/ame2. 12081.
Oyagbemi AA, Omobowale TO, Saba AB, Adedara IA, Olowu ER, Akinrinde AS, Dada RO. 2016. Gallic acid protects against cyclophosphamide-induced toxicity in testis and epididymis of rats. Andrologia. 48:393–401. DOI: 10.1111/and.12459.
Panda V, Deshmukh A, Singh S, Shah T, Hingorani L. 2021. An ayurvedic formulation of Emblica officinalis and Curcuma longa alleviates insulin resistance in diabetic rats: Involvement of curcuminoids and polyphenolics. J Ayurveda Integr Med. 12:506–513. DOI: 10.1016/j. jaim.2021.05.005.
Pujimulyani D, Yulianto WA, Setyowati A, Arumwardana S, Sari Widya Kusuma H, Adhani Sholihah I, Rizal R, Widowati W, Maruf A. 2020. Hypoglycemic activity of Curcuma mangga Val. extract via modulation of GLUT4 and PPAR-γ mRNA expression in 3T3-L1 adipocytes. J Exp Pharmacol. 12:363–369. DOI: 10.2147/JEP.S267912.
Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa Mc. 2016. Curcumin and health. Molecules. 21:264. DOI: 10.3390/molecules21030264.
Rahimifard M, Baeeri M, Bahadar H, Moini-Nodeh S, Khalid M, Haghi-Aminjan H, Mohammadian H, Abdollahi M. 2020. Therapeutic effects of gallic acid in regulating senescence and diabetes; an in vitro study. Molecules. 25:5875. DOI: 10.3390/molecules25245875.
Rong Y, Cao B, Liu B, Li W, Chen Y, Chen H, Liu Y, Liu T. 2018. A novel gallic acid derivative attenuates BLM-induced pulmonary fibrosis in mice. Int Immunopharmacol. 64:183–191. DOI: 10.1016/j.intimp. 2018.08.024.
Shahedi A, Talebi AR, Mirjalili A, Pourentezari M. 2021. Protective effects of curcumin on chromatin quality, sperm parameters, and apoptosis following testicular torsion-detorsion in mice. Clin Exp Reprod Med. 48(1):27–33. DOI: 10.5653/cerm.2020.03853.
Sökmen M, Khan M. 2016. The antioxidant activity of some curcuminoids and chalcones. Inflammopharmacology. 24:81–86. DOI: 10.1007/s10787-016-0264-5.
Soleimani V, Sahebkar A, Hosseinzadeh H. 2018. Turmeric (Curcuma longa ) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phyther Res. 32:985–995. DOI: 10.1002/ptr.6054.
Variya BC, Bakrania AK, Madan P, Patel SS. 2019. Acute and 28-days repeated dose sub-acute toxicity study of gallic acid in albino mice. Regul Toxicol Pharmacol. 101:71–78. DOI: 10.1016/j.yrtph.2018.11.010.
Variya BC, Bakrania AK, Patel SS. 2020. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine. 73:152906. DOI: 10.1016/j.phymed.2019.15290.
Wang B, Cui Z, Zhong Z, Sun Y, Sun Q, Yang G, Bian L. 2015. Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression. Acta Pharmacol Sin. 36:939–948. DOI: 10.1038/aps.2015.47.
Wang J, Tang L, White J, Fang J. 2014. Inhibitory effect of gallic acid on CCl4-mediated liver fibrosis in mice. Cell Biochem Biophys. 69:21–26. DOI: 10.1007/s12013-013-9761-y.
Wang Z, Yang Y, Xiang X, Zhu Y, Men J, He M. 2010. Estimation of the normal range of blood glucose in rats. Wei Sheng Yan Jiu. 39:133–1377.
Xia Z, Chen W, Shi L, Jiang X, Li K, Wang Y, Liu Y. 2020. The underlying mechanisms of curcumin inhibition of hyperglycemia and hyperlipidemia in rats fed a high-fat diet combined with STZ treatment. Molecules. 25:271. DOI: 10.3390/molecules25020271.
Yang K, Zhang L, Liao P, Xiao Z, Zhang F, Sindaye D, Xin Z, Tan C, Deng J, Yin Y, Deng B. 2020. Impact of Gallic Acid on Gut Health: Focus on the Gut Microbiome, Immune Response, and Mechanisms of Action. Front Immunol. 11:580208. DOI: 10.3389/ fimmu.2020.580208/full.
Yang Y, Su Y, Yang H, Lee Y, Chou JI, Ueng K. 2014. Lipid-lowering effects of curcumin in patients with metabolic syndrome: A randomized, double-blind, placebo-controlled trial. Phyther Res. 28:1770–1777. DOI: 10.1002/ptr.5197.
Yin H, Zuo Z, Yang Z, Guo H, Fang J, Cui H, Ouyang P, Chen X, Chen J, Geng Y, et al. 2021. Nickel induces autophagy via PI3K/AKT/mTOR and AMPK pathways in mouse kidney. Ecotoxicol Environ Saf . 223:112583. DOI: 10.1016/j.ecoenv.2021.112583.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.