Alternative Quantitative Digital Analysis of Agarose Gel PCR Products for Detection of Molecular Markers in Livestock

Suyatno Suyatno, Anita Hafid, Ferdy Saputra, Teguh Ari Prabowo

Abstract

The conventional polymerase chain reaction (PCR) method has become a prerequisite in molecular biology research. The PCR reaction is easy to prepare and only requires a small portion of the complex target nucleotide sequence, making PCR an easy and accurate method to use in biochemical and molecular analysis. PCR is generally divided into two categories: qualitative PCR and quantitative real-time PCR (RT-qPCR). The RT-qPCR method is more precise but has the disadvantage that it is much more expensive and requires more complicated equipment than conventional PCR. PCR products were visualized using agarose gel electrophoresis, which produced bands. Along with the development of digital technology, the resulting bands can be analyzed using digital software commonly used to analyze photos, such as ImageJ from the NIH. The trial results using ImageJ software to analyze CD44 in comparison with the housekeeping gene ?-Actin demonstrated that gene expression can be quantified. Quantitative measurements of CD44 and ?-Actin expression were obtained by comparing the percentage of their respective peak plots. Analysis showed that CD44 expression was higher than ?-Actin when evaluated with ImageJ software. These findings align with RT-qPCR results, which require more advanced PCR equipment and reagents. The semi-quantitative PCR analysis method using ImageJ offers a practical alternative for livestock and veterinary laboratories with limited budgets and resources.

Keywords

gene expression quantification, molecular biology, veterinary laboratories, RT-PCR, ImageJ Software

Full Text:

PDF

References

Ahmad SMS, Nazar H, Rahman MM, Rusyniak RS, Ouhtit A. 2023. ITGB1BP1, a Novel Transcriptional Target of CD44-Downstream Signaling Promoting Cancer Cell Invasion. Breast Cancer: Targets and Therapy [Internet]. [accessed 2024 Dec 13] 15:373–380. https://doi.org/10.2147/BCTT.S404565

Ai JW, Zhang Y, Zhang HC, Xu T, Zhang WH. 2020. Era of molecular diagnosis for pathogen identification of unexplained pneumonia, lessons to be learned. Emerg Microbes Infect [Internet]. [accessed 2021 Mar 9] 9(1):597–600. https://doi.org/10.1080/22221751.2020.1738905

Arya SK, Jain G, Upadhyay SK, Sarita, Singh H, Dixit S, Verma PC. 2017. Reference genes validation in Phenacoccus solenopsis under various biotic and abiotic stress conditions. Scientific Reports 2017 7:1 [Internet]. [accessed 2024 Oct 30] 7(1):1–12. https://doi.org/10.1038/s41598-017-13925-9

Bartlett JMS, Stirling D, Bartlett JMS, Stirling D. 2003. A Short History of the Polymerase Chain Reaction. In: PCR Protocols. [place unknown]: Humana Press; p. 3–6. https://doi.org/10.1385/1-59259-384-4:3

Bustin SA. 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol [Internet]. [accessed 2024 Dec 13] 25(2):169–193. https://doi.org/10.1677/JME.0.0250169

Chapela M-J, Garrido-Maestu A, Cabado AG. 2015. Detection of foodborne pathogens by qPCR: A practical approach for food industry applications. Cogent Food Agric [Internet]. [accessed 2021 Mar 9] 1(1):1013771. https://doi.org/10.1080/23311932.2015.1013771

Choudhry P. 2016. High-Throughput Method for Automated Colony and Cell Counting by Digital Image Analysis Based on Edge Detection. PLoS One. 11(2):e0148469. https://doi.org/10.1371/JOURNAL.PONE.0148469

Chung M-J, Park S, Son J-Y, Lee J-Y, Yun HH, Lee E-J, Lee EM, Cho G-J, Lee S, Park H-S, Jeong K-S. 2019. Differentiation of equine induced pluripotent stem cells into mesenchymal lineage for therapeutic use. 18(21):2954–2971. https://doi.org/10.1080/15384101.2019.1664224

Das S, Kumar M, Negi V, Pattnaik B, Prakash YS, Agrawal A, Ghosh B. 2014. MicroRNA-326 Regulates Profibrotic Functions of Transforming Growth Factor-? in Pulmonary Fibrosis. 50(5):882–892. https://doi.org/10.1165/RCMB.2013-0195OC

Dimov IK, Lu R, Lee EP, Seita J, Sahoo D, Park SM, Weissman IL, Lee LP. 2014. Discriminating cellular heterogeneity using microwell-based RNA cytometry. Nature Communications 2014 5:1 [Internet]. [accessed 2022 Jul 1] 5(1):1–12. https://doi.org/10.1038/ncomms4451

Fan HC, Quake SR. 2007. Detection of aneuploidy with digital polymerase chain reaction. Anal Chem [Internet]. [accessed 2022 Jul 1] 79(19):7576–7579. https://doi.org/10.1021/AC0709394

Fatchiyah, Arumingtyas EL, Widyarti S, Rahayu S. 2011. Biologi Molekuler: Prinsip Dasar Analisis. Jakarta: Erlangga.

Forootan A, Sjöback R, Björkman J, Sjögreen B, Linz L, Kubista M. 2017. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol Detect Quantif. 12:1–6. https://doi.org/10.1016/J.BDQ.2017.04.001

Gallo-Oller G, Ordoñez R, Dotor J. 2018. A new background subtraction method for Western blot densitometry band quantification through image analysis software. J Immunol Methods. 457:1–5. https://doi.org/10.1016/J.JIM.2018.03.004

Garcia JGN, Ma SF. 2005. Polymerase chain reaction: A landmark in the history of gene technology. Crit Care Med [Internet]. [accessed 2024 Oct 30] 33(12 SUPPL.). https://doi.org/10.1097/01.CCM.0000186782.93865.00

Garibyan L, Avashia N. 2013. Polymerase chain reaction. Journal of Investigative Dermatology. 133(3):1–4. https://doi.org/10.1038/jid.2013.1

Gibson-Daw G, Crenshaw K, McCord B. 2018. Optimization of ultrahigh-speed multiplex PCR for forensic analysis. Anal Bioanal Chem [Internet]. [accessed 2023 Mar 8] 410(1):235–245. https://doi.org/10.1007/S00216-017-0715-X/FIGURES/8

Green MR, Sambrook J. 2018. The basic polymerase chain reaction (PCR). Cold Spring Harb Protoc. 2018(5):338–345. https://doi.org/10.1101/pdb.prot095117

Green MR, Sambrook J. 2019. Polymerase chain reaction. Cold Spring Harb Protoc. 2019(6):436–456. https://doi.org/10.1101/pdb.top095109

Guzmán C, Bagga M, Kaur A, Westermarck J, Abankwa D. 2014. ColonyArea: An ImageJ Plugin to Automatically Quantify Colony Formation in Clonogenic Assays. PLoS One. 9(3):e92444. https://doi.org/10.1371/JOURNAL.PONE.0092444

Hahn S, Lapaire O. 2013. Polymerase Chain Reaction, Real-Time Quantitative. Brenner’s Encyclopedia of Genetics: Second Edition.:396–397. https://doi.org/10.1016/B978-0-12-374984-0.01187-6

Hamond C, Martins G, Loureiro AP, Pestana C, Lawson-Ferreira R, Medeiros MA, Lilenbaum W. 2014. Urinary PCR as an increasingly useful tool for an accurate diagnosis of leptospirosis in livestock. Vet Res Commun [Internet]. [accessed 2023 Mar 8] 38(1):81–85. https://doi.org/10.1007/S11259-013-9582-X/FIGURES/1

Hewajuli DA, Nlpi D, Besar B, Veteriner P, Re J. 2014. Perkembangan Teknologi Reverse Transcriptase-Polymerase Chain Reaction dalam Mengidentifikasi Genom Avian Influenza dan Newcastle Diseases [Internet]. [accessed 2023 Mar 8] 24. www.ncbi.nlm.nih.gov/BLA

Jiao Z-H, Li M, Feng Y-X, Shi J-C, Zhang J, Shao B. 2014. Hormesis Effects of Silver Nanoparticles at Non-Cytotoxic Doses to Human Hepatoma Cells. PLoS One. 9(7):e102564. https://doi.org/10.1371/JOURNAL.PONE.0102564

Kishimoto M, Tsuchiaka S, Rahpaya SS, Hasebe A, Otsu K, Sugimura S, Kobayashi S, Komatsu N, Nagai M, Omatsu T, et al. 2017. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex. Journal of Veterinary Medical Science [Internet]. [accessed 2023 Mar 8] 79(3):517–523. https://doi.org/10.1292/JVMS.16-0489

Kishore A, Sodhi M, Khate K, Kapila N, Kumari P, Mukesh M. 2013. Selection of stable reference genes in heat stressed peripheral blood mononuclear cells of tropically adapted Indian cattle and buffaloes. Mol Cell Probes. 27(3–4):140–144. https://doi.org/10.1016/J.MCP.2013.02.003

Knapp J, Millon L, Mouzon L, Umhang G, Raoul F, Ali ZS, Combes B, Comte S, Gbaguidi-Haore H, Grenouillet F, Giraudoux P. 2014. Real time PCR to detect the environmental faecal contamination by Echinococcus multilocularis from red fox stools. Vet Parasitol. 201(1–2):40–47. https://doi.org/10.1016/J.VETPAR.2013.12.023

Kralik P, Ricchi M. 2017. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Front Microbiol. 8(FEB):108. https://doi.org/10.3389/FMICB.2017.00108/BIBTEX

Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L, et al. 2006. The real-time polymerase chain reaction. Mol Aspects Med. 27(2–3):95–125. https://doi.org/10.1016/j.mam.2005.12.007

Laohavisudhi F, Chunchai T, Ketchaikosol N, Thosaporn W, Chattipakorn N, Chattipakorn SC. 2022. Evaluation of CD44s, CD44v6, CXCR2, CXCL1, and IL-1? in Benign and Malignant Tumors of Salivary Glands. Diagnostics 2022, Vol 12, Page 1275 [Internet]. [accessed 2024 Dec 13] 12(5):1275. https://doi.org/10.3390/DIAGNOSTICS12051275

Lee C-C, Wang C-N, Lee Y-L, Tsai Y-R, Liu J-J. 2015. High Mobility Group Box 1 Induced Human Lung Myofibroblasts Differentiation and Enhanced Migration by Activation of MMP-9. PLoS One. 10(2):e0116393. https://doi.org/10.1371/JOURNAL.PONE.0116393

Lee HY, Back K. 2017. Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J Pineal Res. 62(2):e12379. https://doi.org/10.1111/JPI.12379

De Medici D, Kuchta T, Knutsson R, Angelov A, Auricchio B, Barbanera M, Diaz-Amigo C, Fiore A, Kudirkiene E, Hohl A, et al. 2015. Rapid Methods for Quality Assurance of Foods: the Next Decade with Polymerase Chain Reaction (PCR)-Based Food Monitoring. Food Anal Methods [Internet]. [accessed 2023 Mar 8] 8(2):255–271. https://doi.org/10.1007/S12161-014-9915-6/TABLES/3

Morling N. 2009. PCR in forensic genetics. Biochem Soc Trans [Internet]. [accessed 2021 Mar 9] 37(2):438–440. https://doi.org/10.1042/BST0370438

Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. 2017. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 2017 18:1. 18(1):1–26. https://doi.org/10.1186/S12859-017-1934-Z

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9(7):671–675. https://doi.org/10.1038/nmeth.2089

Shen X, Zhou S, Yang Y, Hong T, Xiang Z, Zhao J, Zhu C, Zeng L, Zhang L. 2022. TAM-targeted reeducation for enhanced cancer immunotherapy: Mechanism and recent progress. Front Oncol. 12:1034842. https://doi.org/10.3389/FONC.2022.1034842/BIBTEX

Toohey-Kurth K, Reising MM, Tallmadge RL, Goodman LB, Bai J, Bolin SR, Pedersen JC, Bounpheng MA, Pogranichniy RM, Christopher-Hennings J, et al. 2020. Suggested guidelines for validation of real-time PCR assays in veterinary diagnostic laboratories. J Vet Diagn Invest [Internet]. [accessed 2023 Mar 8] 32(6):802. https://doi.org/10.1177/1040638720960829

Waller J V., Kaur P, Tucker A, Lin KK, Diaz MJ, Henry TS, Hope M. 2020. Diagnostic Tools for Coronavirus Disease (COVID-19): Comparing CT and RT-PCR Viral Nucleic Acid Testing. American Journal of Roentgenology [Internet]. [accessed 2021 Mar 9] 215(4):834–838. https://doi.org/10.2214/AJR.20.23418

Zauli DAG. 2020. PCR and Infectious Diseases. In: Nagpal ML, Boldura O-M, Balt? C, Enany S, editors. Synthetic Biology: New Interdisciplinary Science [Internet]. [place unknown]; [accessed 2023 Mar 8]; p. 137–145. https://doi.org/http://dx.doi.org/10.5772/intechopen.85630

Zhong Q, Bhattacharya S, Kotsopoulos S, Olson J, Taly V, Griffiths AD, Link DR, Larson JW. 2011. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip [Internet]. [accessed 2022 Jul 1] 11(13):2167–2174. https://doi.org/10.1039/C1LC20126C

Zhu H, Zhang H, Xu Y, Laššáková S, Korabe?ná M, Neužil P. 2020. PCR past, present and future. Biotechniques [Internet]. [accessed 2023 Mar 8] 69(4):317–325. https://doi.org/10.2144/BTN-2020-0057/ASSET/IMAGES/LARGE/FIGURE3.JPEG

Zhu Q, Qiu L, Yu B, Xu Y, Gao Y, Pan T, Tian Q, Song Q, Jin W, Jin Q, Mu Y. 2014. Digital PCR on an integrated self-priming compartmentalization chip. Lab Chip [Internet]. [accessed 2022 Jul 1] 14(6):1176–1185. https://doi.org/10.1039/C3LC51327K

Refbacks

  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.