Optimal and Tolerant Conditions for Alginate and Calcium Chloride for the Semen Encapsulation of Pasundan Bull

Ayesha Khan, Muhammad Abdul Manan, Daud Samsudewa, Fitra Aji Pamungkas, Hamza Zulfiqar, Saad Irfan, Kiran Haidari, Vidi Wulandari, Didik Nurul Hadi

Abstract

The study aimed to determine the tolerance of Pasundan bull's sperm with different alginate and calcium chloride (CaCl2) concentrations to identify optimal conditions for sperm encapsulation. Semen samples were collected weekly with artificial vaginas from pasundan bulls. Pooled semen was divided into 9 equal volumes. The first sample was diluted with tris egg yolk extender (control), 4 samples were diluted with tris egg yolk extender supplemented with different concentrations of alginate (0.25, 0.5, 0.75, and 1%), and 4 other samples with CaCl2 (2.5, 5, 10, and 20 mM). Evaluation of semen was determined after 5 min incubation at room temperature and after overnight storage at 5 °C. Results showed that after 24h of refrigerated storage, the values for total motility and progressive motility in the groups with 2.5 mM CaCl2 and 0.25% alginate showed no difference compared to the control group. In contrast, a significant difference (P<0.05) was found between the other groups with  CaCl2 and alginate. The progressive motility value in the group with alginate concentration greater than 0.25% decreased significantly (P<0.05). There was no difference between the groups (both alginate and CaCl2) in the spermatozoa viability and plasma membrane integrity variable. In conclusion, sperm with 2.5 mM calcium chloride and 0.25 % alginate was more tolerant of appropriate prolonged exposure and the sperm encapsulation process.

Keywords

Alginate, calcium chloride, sperm tolerance, encapsulation, pasundan bull semen

Full Text:

PDF

References

Abdel Aziz RL, Hussein MM, El?Said H, Kamel S, Ibrahim MA, Abdel?Wahab A. 2023. Monitoring of health status, performance, and transcript abundance of some genes in dairy heifers produced by embryo transfer or artificial insemination. Reprod Domest Anim. 58:1146–1155.

Ahmad A, Mubarak NM, Jannat FT, Ashfaq T, Santulli C, Rizwan M, Najda A, Bin-Jumah M, Abdel-Daim MM, Hussain S. 2021. A critical review on synthesizing natural sodium alginate-based composite materials: An innovative biological polymer for biomedical delivery applications. Processes. 9:137.

Ahmadi A, Zorofchian Moghadamtousi S, Abubakar S, Zandi K. 2015. Antiviral potential of algae polysaccharides isolated from marine sources: a review. Biomed Res Int. 2015.

Anchordoquy JP, Lorenti SN, Polero GS, Farnetano NA, Rosa DE, Fabra MC, Carranza-Martin AC, Nikoloff N, Furnus CC, Anchordoquy JM. 2022. Parenteral copper administration at the beginning of a fixed-time artificial insemination protocol in beef cattle: effect on ovarian function and pregnancy rates. Biol Trace Elem Res. 200:1617–1625.

Ashizawa K, Oyama N, Katayama S, Narumi K, Tatemoto H, Tsuzuki Y. 2013. Regulation of fowl sperm motility: Evidence for the indirect, but not direct, involvement of dynein-ATPase activity on the reversible temperature-dependent immobilization. Theriogenology. 79:558–565.

Barbas JP, Leahy T, Horta AE, García-Herreros M. 2018. Sperm kinematics and subpopulational responses during the cryopreservation process in caprine ejaculates. Cryobiology. 82:137–147. DOI:10.1016/j.cryobiol.2018 .03.005.

Bondarenko O, Dzyuba B, Rodina M, Cosson J. 2017. Role of Ca2+ in the IVM of spermatozoa from the sterlet Acipenser ruthenus. Reprod Fertil Dev [Internet]. 29:1319. DOI:10.1071/RD16145.

Chen IMA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, Huntemann M, Varghese N, White JR, Seshadri R, et al. 2019. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47:D666–D677. hDOI:10.1093/nar/gky901.

Darussalam I, Arifiantini RI, Supriatna I, Rasad RSD. 2020. The effect of L-carnitine in Tris egg yolk-based diluent on the quality of Pasundan bull semen preserved in chilled condition. J Indones Trop Anim Agric. 45:197–205. DOI:10.14710/jitaa.45.3.197-205.

Dias C, Nylandsted J. 2021. Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discov. 7:4. DOI:10.1038/s41421-020-00233-2.

Dzyuba B, Bondarenko O, Fedorov P, Gazo I, Prokopchuk G, Cosson J. 2017. Energetics of fish spermatozoa: The proven and the possible. Aquaculture. 472:60–72. DOI:10.1016/j.aquaculture.2016.05.038.

Eckel BA, Guo R, Reinhardt K. 2017. There are more pitfalls with sperm viability staining and a viability-based stress test to characterize sperm quality. Front Ecol Evol. 5. DOI:10.3389/fevo.2017.00165.

Faustini M. 2011. New Aspects of Boar Sperm Encapsulation. Reprod Domest Anim. 46:52–54. DOI:10.1111/j.1439-0531.2011.01868.x.

Fernandez-Novo A, Santos-Lopez S, Barrajon-Masa C, Mozas P, de Mercado E, Caceres E, Garrafa A, Gonzalez-Martin J V., Perez-Villalobos N, Oliet A, Astiz S, Perez-Garnelo SS. 2021. Effect of extender, storage time and temperature on kinetic parameters (CASA) on bull semen samples. Biology (Basel). 10:806. DOI:10.3390/biology100808 06.

Feyzmanesh S, Halvaei I, Baheiraei N. 2022. Alginate effects on human sperm parameters during freezing and thawing: A prospective study. Cell J. 24:417–423. DOI:10.22074/cellj.2022.8122.

Gheorghita Puscaselu R, Lobiuc A, Dimian M, Covasa M. 2020. Alginate: From the food industry to biomedical applications and management of metabolic disorders. Polymers (Basel). 12):2417.

Gil MC, Barón FJ, Guerrero JM, García-Marín LJ, Gil J. 2014. Increasing Extender Viscosity Improves the Quality of Cooled Boar Semen. J Agric Sci. 6. DOI:10.5539/jas.v6n3p12.

Hernández?Figueroa RH, Mani?López E, López?Malo A. 2024. Antifungal activity of alginate coatings with essential oil of Mexican oregano incorporated in the stem of tomatoes. Int J Food Sci Technol. 59:4774–4783. DOI:10.1111/ijfs.17207.

Hu J, Geng G, Li Q, Sun X, Cao H, Liu Y. 2014. Effects of alginate on frozen-thawed boar spermatozoa quality, lipid peroxidation and antioxidant enzymes activities. Anim Reprod Sci. 147:112–118. DOI:10.1016/j.anirepro sci.2014.04.007.

Hufana-Duran D, Mallari RP, Suba DP, Duran PG, Abella EA, Mamuad F V. 2015. Hypo-osmotic swelling test for membrane integrity evaluation of frozen-thawed water buffalo (Bubalus bubalis Linn.) spermatozoa. Philipp J Sci. 144:209–219.

Kang A, Park J, Ju J, Jeong GS, Lee S-H. 2014. Cell encapsulation via microtechnologies. Biomaterials. 35:2651–2663.

Karbassi E, Asadinezhad A, Lehocký M, Humpolí?ek P, Vesel A, Novák I, Sáha P. 2014. Antibacterial performance of alginic acid coating on polyethylene film. Int J Mol Sci. 15:14684–14696.

Król ?, Marycz K, Kulig D, Mar?dziak M, Jarmoluk A. 2017. Cytotoxicity, bactericidal, and antioxidant activity of sodium alginate hydrosols treated with direct electric current. Int J Mol Sci. 18:678.

Kumar P, Pawaria S, Dalal J, Ravesh S, Bharadwaj S, Jerome A, Kumar D, Jan MH, Yadav PS. 2019. Sodium alginate potentiates antioxidants, cryoprotection and antibacterial activities of egg yolk extender during semen cryopreservation in buffalo. Anim Reprod Sci. 209:106166. DOI:10.1016/j.anireprosci.2019.106166.

Kunkitti P, Bergqvist A-S, Sjunnesson Y, Johannisson A, Axnér E. 2016. The tolerance of feline corpus and cauda spermatozoa to cryostress. Theriogenology. 85:502–508.

Kusumaningrum DA, B P, TL Y, P S. 2015. Microencapsulation of bull spermatozoa: Its viability in alginate-egg yolk media. JITV. 20. DOI:10.14334/ji tv.v20i1.1110.

Merino V, Falcón N, Morel N, González G. 2017. Detección de coproantígenos de Echinococcus granulosus en canes de trabajadores de camales y comercializadores de vísceras en Lima metropolitana.Merino V, editor. Rev Panam Salud Publica. 41:1–5.

Nutile SA, Solan ME. 2019. Toxicity testing of “eco-friendly” de-icing formulations using Chironomus dilutus. Environ Pollut. 246:408–413.

Pérez L, Vílchez MC, Gallego V, Morini M, Peñaranda DS, Asturiano JF. 2016. Role of calcium on the initiation of sperm motility in the European eel. Comp Biochem Physiol Part A Mol Integr Physiol. 191:98–106. DOI:10.1016/j.cbpa.2015.10.009.

Pruß D, Oldenhof H, Wolkers WF, Sieme H. 2022. Alginate encapsulation of stallion sperm for increasing storage stability. Anim Reprod Sci. 238:106945. DOI:10.1016 /j.anireprosci.2022.106945.

Rosato M, Iaffaldano N. 2011. Effect of chilling temperature on the long?term survival of rabbit spermatozoa held either in a tris?based or a jellified extender. Reprod Domest Anim. 46:301–308. DOI:10.1111/j.1439-0531.2 010.01667.x.

Sánchez?Sánchez R, Pérez?Garnelo SS, Martín Lluch M, de la Cruz P, Falceto M V., Córdova?Izquierdo A, Torner JG, Mitjana O, Suárez AE, Montull T, Ansó JG, Ansó T, Gómez?Fidalgo E. 2022. Reproductive efficiency of sows inseminated at single dose fixed time with refrigerated, cryopreserved, and encapsulated spermatozoa. Reprod Domest Anim. 57:90–93.DOI:10.1111/rda.14179.

Sandoval?Vargas L, Figueroa Villalobos E, Contreras P, Estay F, Valdebenito Isler I. 2021. Effect of different calcium concentration on sperm motility and fertilisation capacity of rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol. 37:106–112. DOI:10.1111/jai.14116.

Silva GM, Rossetto R, Chaves RN, Duarte ABG, Araújo VR, Feltrin C, Bernuci MP, Anselmo-Franci JA, Xu M, Woodruff TK, et al. 2015. In vitro development of secondary follicles from pre-pubertal and adult goats cultured in two-dimensional or three-dimensional systems. Zygote. 23:475–484. DOI:10.1017/S09671994 14000070.

Singh P, Bedi MK, Singhal S, Singh AK, Kumar A, Honparkhe M. 2022. Effect of graphene oxide as cryoprotectant on post-thaw sperm functional and kinetic parameters of crossbred (HF X Sahiwal) and Murrah buffalo (Bubalus bubalis) bulls. Cryobiology. 106:102–112.

Sutarno S, Adwi S. 2015. Genetic diversity of local and exotic cattle and their crossbreeding impact on the quality of Indonesian cattle. Biodiversitas J Biol Divers. 16.

Swami DS, Kumar P, Malik RK, Saini M, Kumar D, Jan MH. 2017. The cryoprotective effect of iodixanol in buffalo semen cryopreservation. Anim Reprod Sci. 179:20–26. DOI:10.1016/j.anireprosci.2017.01.012.

Thiangthientham P, Suwimonteerabutr J, Tharasanit T, Techakumphu M. 2020. The optimal divalent cations and storage temperatures for the encapsulation of ram spermatozoa. Thai J Vet Med. 50:89–96. DOI:10.568 08/2985-1130.3079.

Tøndervik A, Sletta H, Klinkenberg G, Emanuel C, Powell LC, Pritchard MF, Khan S, Craine KM, Onsøyen E, Rye PD. 2014. Alginate oligosaccharides inhibit fungal cell growth and potentiate the activity of antifungals against Candida and Aspergillus spp. PLoS One. 9:e112518.

Veisi M, Mansouri K, Assadollahi V, Jalili C, Pirnia A, Salahshoor MR, Hoseinkhani Z, Gholami MR. 2022. Evaluation of co-cultured spermatogonial stem cells encapsulated in alginate hydrogel with Sertoli cells and their transplantation into azoospermic mice. Zygote. 30:344–351.

Yániz J, Martí JI, Silvestre MA, Folch J, Santolaria P, Alabart JL, López-Gatius F. 2005. Effects of solid storage of sheep spermatozoa at 15°C on their survival and penetrating capacity. Theriogenol. 64:1844–1851. DOI:0.1016/j.theriogenology.2005.04.012.

Yuan Y, Yin M, Chen L, Liu F, Chen M, Zhong F. 2022. Effect of calcium ions on the freeze-drying survival of probiotic encapsulated in sodium alginate. Food Hydrocoll. 130:107668. DOI:10.1016/j.foodhyd.2022. 107668.

Refbacks

  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.