Improving Storage Stability and Kinetics of Pasundan Bull Sperm Encapsulation Using Alginate Solid Beads

Muhammad Abdul Manan, Ayesha Khan, Daud Samsudewa, Fitra Aji Pamungkas, Faheem Abbas, Bushra Nisar Khan, Kiran Haideri, Hamza Zulfiqar, Imam Darussalam, Rita Widaningsih

Abstract

The study aims to develop a pasundan bull sperm encapsulation process and investigate whether alginate solid bead encapsulation improves sperm lifetime and survivability in cold storage. In order to make sperm encapsulation, 0.5% and 0.25% sperm-alginate droplets were added to a solution containing 1.5% dissolved calcium chloride (CaCl2) in physiological saline, and droplets were allowed to settle for one minute, resulting in sperm embedded in solid beads of alginate matrix. Solid beads and unencapsulated sperms in a diluent of tris egg yolk with 0.25% and 0.5% alginate were assessed following 0 h, 24 h, 48 h, 72 h, and 96 h of refrigerated storage at 5°C. The observed parameters, in addition to sperm viability and membrane integrity, also include total motility, progressive motility, and sperm kinematics, which were measured using computer-assisted sperm analysis (CASA) systems. To determine if differences amongst data were statistically significant, analysis of variance was used, and the Duncan Multi Range Test was performed. The result showed that although the initial process of encapsulation resulted in a decrease in total motility, progressive motility, and kinematics value, alginate solid bead encapsulation was found to be more stable than unencapsulated sperm during storage at 5 °C for up to 4 days. The movement of spermatozoa is restricted to the viscosity of the alginate medium without disturbing the membrane's viability and integrity. It can be concluded that alginate solid bead encapsulation in pasundan bull semen can improve sperm stabilization during refrigerator storage.

Keywords

Alginat; Kinematika; Sperma Sapi Pasundan; Preservasin; Alginate Solid Bead Enkapsulasi

Full Text:

PDF

References

Alipour H, Van Der Horst G, Christiansen OB, Dardmeh F, Jørgensen N, Nielsen HI, Hnida C. 2017. Improved sperm kinematics in semen samples collected after 2 h versus 4–7 days of ejaculation abstinence. Hum Reprod [Internet]. 32(7):1364–1372. https://doi.org/10.1093/humrep/dex101

Alm?Kristiansen A, Gaustad E, Bai G, Standerholen F, Klinkenberg G, Kommisrud E, Waterhouse K. 2018. In vitro studies of Norwegian Red bovine semen immobilized and cryopreserved in alginate solid gel network. Reprod Domest Anim [Internet]. 53(2):365–370. https://doi.org/10.1111/rda.13115

Arifin J, Komar SB, Indrijani H, Daud AR, Kuswaryan S. 2019. The Gene Distribution, Population Equilibrium, Effective Population Size of Pasundan Cattle in Village Breeding Centre at the Southern Part of West Java, Indonesia. KnE Life Sci.:216–226.

Baharun A, Rahmi A, Handarini R, Maulana T, Said S, Iskandar H, Darussalam I, Nalley WMM, Arifiantini RI. 2023. Semen quality and frozen semen production in Pasundan bulls: A molecular weight perspective on seminal plasma and spermatozoa protein. J Adv Vet Anim Res. 10(4):730.

Baldaniya R V, Chaudhari NF, Modi LC, Patel CM, Pandor MA, Diniz W. 2021. Plasma membrane integrity of cauda epididymal buck spermatozoa in tris yolk citrate extender supplemented with coconut water at refrigeration temperature.

Barbas JP, Leahy T, Horta AE, García-Herreros M. 2018. Sperm kinematics and subpopulational responses during the cryopreservation process in caprine ejaculates. Cryobiology [Internet]. 82:137–147. https://doi.org/10.1016/j.cryobiol.2018.03.005

Batissaco L, Arruda RP de, Alves MBR, Torres MA, Lemes KM, Prado-Filho RR, Almeida TG de, de Andrade AFC, Celeghini ECC. 2020. Cholesterol-loaded cyclodextrin is efficient in preserving sperm quality of cryopreserved ram semen with low freezability. Reprod Biol [Internet]. 20(1):14–24. https://doi.org/10.1016/j.repbio.2020.01.002

Bernabò N, Sanchez MR, Valbonetti L, Greco L, Capacchietti G, Mattioli M, Barboni B. 2018. Membrane Dynamics of Spermatozoa during Capacitation: New Insight in Germ Cells Signalling. In: Germ Cell [Internet]. [place unknown]: InTech. https://doi.org/10.5772/intechopen.69964

Chenoweth P. 2022. Sperm Morphology. In: Man Anim Androl. [place unknown]: CABI GB; p. 45–55.

Dwitresnadi R, Sulaeman M, Arifin J. 2015. Breeding activity performance of Pasundan cattle on extensive system. J Fak Peternak Univ Padjajaran. 4:1–11.

Ebel FA, Liaudat AC, Blois DA, Capella V, Broglia MF, Barbero CA, Rodríguez N, Bosch P, Rivarola CR. 2023. Biointerfacial behavior of stallion spermatozoa adhered to hydrogel surfaces: Impact of the hydrogel chemical composition and the culture medium. Colloids Surfaces B Biointerfaces. 231:113575.

Feyzmanesh S, Halvaei I, Baheiraei N. 2022. Alginate Effects on Human Sperm Parameters during Freezing and Thawing: A Prospective Study. Cell J. 24(7):417–423. https://doi.org/10.22074/cellj.2022.8122

Galarza DA, Duma M, Samaniego JX, Soria M, Méndez S. 2023. Cryopreservation of Domestic and Wild Animal Spermatozoa: Update of Knowledge.

Gordon I. 2017. Reproductive technologies in farm animals.

Gosálvez J, López?Fernández C, Fernández JL, Johnston S. 2021. Microencapsulation of human spermatozoa increases membrane stability and DNA longevity. Andrologia [Internet]. 53(2). https://doi.org/10.1111/and.13924

Gunde-Cimerman N, Plemenitaš A, Buzzini P. 2014. Changes in Lipids Composition and Fluidity of Yeast Plasma Membrane as Response to Cold. In: Cold-adapted Yeasts [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; p. 225–242. https://doi.org/10.1007/978-3-642-39681-6_10

Van de Hoek M, Rickard JP, de Graaf SP. 2022. Motility assessment of ram spermatozoa. Biology (Basel). 11(12):1715.

Höfner L, Luther A-M, Waberski D. 2020. The role of seminal plasma in the liquid storage of spermatozoa. Anim Reprod Sci [Internet]. 220:106290. https://doi.org/10.1016/j.anireprosci.2020.106290

Knox R. 2015. The Fertility of Frozen Boar Sperm When used for Artificial Insemination. Reprod Domest Anim [Internet]. 50(S2):90–97. https://doi.org/10.1111/rda.12552

Kumar P, Pawaria S, Dalal J, Ravesh S, Bharadwaj S, Jerome A, Kumar D, Jan MH, Yadav PS. 2019. Sodium alginate potentiates antioxidants, cryoprotection and antibacterial activities of egg yolk extender during semen cryopreservation in buffalo. Anim Reprod Sci [Internet]. 209:106166. https://doi.org/10.1016/j.anireprosci.2019.106166

Lehti MS, Sironen A. 2017. Formation and function of sperm tail structures in association with sperm motility defects. Biol Reprod. 97(4):522–536.

Pahlevanzadeh F, Mokhtari H, Bakhsheshi-Rad HR, Emadi R, Kharaziha M, Valiani A, Poursamar SA, Ismail AF, RamaKrishna S, Berto F. 2020. Recent trends in three-dimensional bioinks based on alginate for biomedical applications. Materials (Basel). 13(18):3980.

Paschoal AFL, Luther A-M, Jäkel H, Scheinpflug K, Mühldorfer K, P. Bortolozzo F, Waberski D. 2020. Determination of a cooling-rate frame for antibiotic-free preservation of boar semen at 5°C.Hansen PJ, editor. PLoS One [Internet]. 15(6):e0234339. https://doi.org/10.1371/journal.pone.0234339

Perteghella S, Gaviraghi A, Cenadelli S, Bornaghi V, Galli A, Crivelli B, Vigani B, Vigo D, Chlapanidas T, Faustini M, Torre ML. 2017. Alginate encapsulation preserves the quality and fertilizing ability of Mediterranean Italian water buffalo ( Bubalus bubalis ) and Holstein Friesian ( Bos taurus ) spermatozoa after cryopreservation. J Vet Sci [Internet]. 18(1):81. https://doi.org/10.4142/jvs.2017.18.1.81

Perteghella S, Vigani B, Crivelli B, Spinaci M, Galeati G, Bucci D, Vigo D, Torre M, Chlapanidas T. 2015a. Sperm Encapsulation from 1985 to Date: Technology Evolution and New Challenges in Swine Reproduction. Reprod Domest Anim [Internet]. 50(S2):98–102. https://doi.org/10.1111/rda.12538

Perteghella S, Vigani B, Crivelli B, Spinaci M, Galeati G, Bucci D, Vigo D, Torre M, Chlapanidas T. 2015b. Sperm Encapsulation from 1985 to Date: Technology Evolution and New Challenges in Swine Reproduction. Reprod Domest Anim [Internet]. 50:98–102. https://doi.org/10.1111/rda.12538

Pruß D, Oldenhof H, Wolkers WF, Sieme H. 2022. Alginate encapsulation of stallion sperm for increasing storage stability. Anim Reprod Sci [Internet]. 238:106945. https://doi.org/10.1016/j.anireprosci.2022.106945

Rahman MM, Asadi Aghbolaghi M, Hung T-C. 2023. Evaluate effects of the dilution medium and holding time on various motility parameters of delta smelt semen. Theriogenology [Internet]. 197:301–309. https://doi.org/10.1016/j.theriogenology.2022.11.029

Roca J, Parrilla I, Bolarin A, Martinez EA, Rodriguez-Martinez H. 2016. Will AI in pigs become more efficient? Theriogenology [Internet]. 86(1):187–193. https://doi.org/10.1016/j.theriogenology.2015.11.026

Shah S, Otsuki T, Fujimura C, Yamamoto N, Yamashita Y, Higaki S, Hishinuma M. 2011. Cryopreservation of microencapsulated canine sperm. Theriogenology [Internet]. 75(4):679–686. https://doi.org/10.1016/j.theriogenology.2010.10.008

Sharafi M, Borghei-Rad SM, Hezavehei M, Shahverdi A, Benson JD. 2022. Cryopreservation of semen in domestic animals: A review of current challenges, applications, and prospective strategies. Animals. 12(23):3271.

Torre M., Maggi L, Vigo D, Galli A, Bornaghi V, Maffeo G, Conte U. 2000. Controlled release of swine semen encapsulated in calcium alginate beads. Biomaterials [Internet]. 21(14):1493–1498. https://doi.org/10.1016/S0142-9612(00)00035-1

Tram NK, Jiang P, Torres?Flores TC, Jacobs KM, Chandler HL, Swindle?Reilly KE. 2020. A Hydrogel Vitreous Substitute that Releases Antioxidant. Macromol Biosci [Internet]. 20(2). https://doi.org/10.1002/mabi.201900305

Widyastuti R, Haq NMD, Pristihadi DN, Maheshwari H, Sumantri C, Boediono A. 2022. The Viabilities of Freeze-Thaw Pasundan-Bull Sperms After a Short-Term Exposure to Media with Different pHs. Trop Anim Sci J. 45(3):270–276.

Wiebke M, Hensel B, Nitsche-Melkus E, Jung M, Schulze M. 2022. Cooled storage of semen from livestock animals (part I): boar, bull, and stallion. Anim Reprod Sci [Internet]. 246:106822. https://doi.org/10.1016/j.anireprosci.2021.106822

Refbacks

  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.