Biofilm Profile of Coagulase Negative Staphylococci Bacteria from Milk Isolate of Dairy Cows with Subclinical Mastitis

Nadissa Alika Rahma Herman, W Sarasati, I C Adi

Abstract

Staphylococcus sp. is a pathogenic bacteria that causes subclinical mastitis. These bacteria are divided into coagulase-negative Staphylococci (CoNS) and coagulase-positive Staphylococci (CoPS). CoNS bacteria are a group of normal flora on human and animal skin. However, several studies have proven that CoNS bacteria are the most commonly isolated microorganisms from the milk of dairy cows with subclinical mastitis. The ability to form biofilms is an important virulence factor for CoNS bacteria. Detection of biofilm formation was carried out on 54 samples of CoNS bacteria in the form of Stored Biological Material (BBT), which were isolated from the milk of dairy cows with subclinical mastitis with positive California mastitis test (CMT) 2 (++). Detection of biofilm formation was performed qualitatively by Congo red agar (CRA) and test tube (TT) methods. Phenotypic confirmation results showed that 54 isolates (100%) were CoNS bacteria. Biofilm formation detection results showed that 51 out of 54 isolates (94.44%) were positive for biofilm formation. Thus, it can be concluded that CoNS bacteria have the ability to form biofilms as a form of self-protection and virulence factor.

Keywords

Biofilm; Coagulase-negative Staphylococci; Subclinical Mastitis; Virulence Factor

Full Text:

PDF

References

Abed A, Hamed, N, Abd El Halim, S. 2022. Coagulase negative Staphylococci causing subclinical mastitis in sheep: prevalence, phenotypic and genotypic characterization. J Vet Med Res. DOI:10.21608/jvmr.2022.145720.1062.

Almwafy AT, Barghoth MG, Desouky SE, Roushdy M. 2020. Preliminary characterization and identification of gram positive hemolysis bacteria. AL-Azhar J Pharmaceut Sci. 62:96-109: DOI:10.21608/ajps.2020.118378.

Amador CI, Stannius RO, Røder HL, Burmølle M. 2021. High-throughput screening alternative to crystal violet biofilm assay combining fluorescence quantification and imaging. J Microbiol Methods. 190: 106343. DOI:10.1016/j.mimet.2021.106343.

Argemi X, Hansmann Y, Prola K, Prévost G. 2019. Coagulase-negative staphylococci pathogenomics. Int J Mol Sci. 20:1215. DOI:10.3390/ijms20051215.

Ayeni FA, Andersen C, Nørskov-Lauritsen N. 2017. Comparison of growth on mannitol salt agar, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, VITEK® 2 with partial sequencing of 16S rRNA gene for identification of coagulase-negative Staphylococci. Microb Pathog. 105:255–259. DOI:10.1016/j.micpath.2017.02.034.

Azih A., Enabulele I. 2013. Species distribution and virulence factors of coagulase negative staphylococci isolated from clinical samples from the University of Benin Teaching Hospital, Edo State, Nigeria. J Nat Sci Res. 3:38–43.

Azimi T, Mirzadeh M, Sabour S, Nasser A, Fallah F, Pourmand MR. 2020. Coagulase-negative Staphylococci (CoNS) meningitis: a narrative review of the literature from 2000 to 2020. New Microbes New Infect. 37:100755. DOI:10.1016/j.nmni.2020.100755.

Becker K, Heilmann C, Peters G. 2014. Coagulase-negative staphylococci. Clin Microbiol Rev. 27:870–926. DOI:10.1128/CMR.00109-13.

Beims H, Overmann A, Fulde M, Steinert M, Bergmann S. 2016. Isolation of Staphylococcus sciuri from horse skin infection. Open Vet J. 6:242–246. DOI:10.4314/ovj. v6i3.14.

Benachinmardi KK, Ravikumar R, Indiradevi B. 2017. Role of biofilm in cerebrospinal fluid shunt infections: A study at tertiary neurocare center from South India. J Neurosci Rural Pract. 8:335–341. DOI:10.4103/jnrp.jnrp_22_17.

Boipai M, Birua KC, Sahu NP, Pandey LB, Beck R, Dinkar S. 2020. Microbiological and Biochemical Analysis of Methicillin-resistant Staphylococcus aureus Isolated from Patients Admitted in RIMS, Ranchi. Asian Pacific J Health Sci. 7:39–43. DOI:10.21276/apjhs.2020.7.3.10.

Brown MM, Horswill AR. 2020. Staphylococcus epidermidis-Skin friend or foe? PLoS Pathog. 16. DOI:10.1371/JOURNAL.PPAT.1009026.

Cheng WN, Han SG. 2020. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments — A review. Asian-Australas J Anim Sci. 33:1699–1713. DOI:10.5713/ajas.20.0156.

Chotigarpa R, Lampang KN, Pikulkaew S, Okonogi S, Ajariyakhajorn K, Mektrirat R. 2018. Inhibitory effects and killing kinetics of lactic acid rice gel against pathogenic bacteria causing bovine mastitis. Sci Pharm. 86. DOI:10.3390/scipharm86030029.

Cirkovic I, Trajkovic J, Hauschild T, Andersen PS, Shittu A, Larsen AR. 2017. Nasal and pharyngeal carriage of methicillin-resistant Staphylococcus sciuri among hospitalized patients and healthcare workers in a Serbian University Hospital. PLoS One. 12. DOI:10.1371/jo urnal.pone.0185181

De Buck J, Ha V, Naushad S, Nobrega DB, Luby C, Middleton JR, De Vliegher S, Barkema HW. 2021. Non-aureus Staphylococci and bovine udder health: Current Understanding and Knowledge Gaps. Front Vet Sci. 8. DOI:10.3389/fvets.2021.658031.

De Visscher A, Piepers S, Haesebrouck F, de Vliegher S. 2016. Teat apex colonization with coagulase-negative Staphylococcus species before parturition: Distribution and species-specific risk factors. J Dairy Sci. 99:1427–1439. DOI:10.3168/jds.2015-10326.

Divyakolu S, Chikkala R, Ratnakar KS, Sritharan V. 2019. Hemolysins of Staphylococcus aureus—an update on their biology, role in pathogenesis and as targets for anti-virulence therapy. Adv Infect Dis. 09:80–104. DOI:10.4236/aid.2019.92007.

Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A. 2020. Antimicrobial and antibiofilm peptides. Biomol. 10:652. DOI:10.3390/biom10040652.

El-Jakee JK, Aref NE, Gomaa A, El-Hariri MD, Galal HM, Omar SA, Samir A. 2013. Emerging of coagulase negative Staphylococci as a cause of mastitis in dairy animals: An environmental hazard. Int J Vet Sci Med. 1:74–78. DOI:10.1016/j.ijvsm.2013.05.006.

Espiritu AJC, Villanueva SYAM. 2022. Isolation and identification of biofilm-producing, drug-resistant coagulase negative Staphylococci from a hospital environment in Northern Philippines. J Pure Appl Microbiol. 16:620–629. DOI:10.22207/JPAM.16.1.63.

França A, Gaio V, Lopes N, Melo LDR. 2021. Virulence factors in coagulase-negative Staphylococci. Pathogens. 10:1–46. DOI:10.3390/pathogens10020170.

Furtuna DK, Debora K, Wasito EB. 2018. Comparison of microbiological examination by test tube and Congo red agar methods to detect biofilm production on clinical isolates. Folia Med Indones. 54:1-5. DOI:10.20473 /fmi.v54i1.8047.

Goetz C, Tremblay YDN, Lamarche D, Blondeau A, Gaudreau AM, Labrie J, Malouin F, Jacques M. 2017. Coagulase-negative Staphylococci species affect biofilm formation of other coagulase-negative and coagulase-positive staphylococci. J Dairy Sci. 100:6454–6464. DOI:10.3 168/jds.2017-12629.

Gurler, H., Findik, A., Sezener, M. G. 2022. Determination of antibiotic resistance profiles and biofilm production of Staphylococcus spp. isolated from Anatolian water buffalo milk with subclinical mastitis. Polish J Vet Sci. 25:51–59. DOI: 10.24425/pjvs.2022.140840.

Hayati LN, Tyasningsih W, Praja RN, Chusniati S, Yunita MN, Wibawati PA. 2019. Isolasi dan identifikasi Staphylococcus aureus pada susu kambing Peranakan Etawah penderita mastitis subklinis di Kelurahan Kalipuro, Banyuwangi. J Med Vet. 2:76-82. DOI:10.204 73/jmv.vol2.iss2.2019.76-82.

Heo S, Lee JH, Jeong DW. 2020. Food-derived coagulase-negative Staphylococcus as starter cultures for fermented foods. Food Sci Biotechnol. 29:1023–1035. DOI:10.10 07/s10068-020-00789-5

Hosseinzadeh S, Dastmalchi Saei H. 2014. Staphylococcal species associated with bovine mastitis in the North West of Iran: Emerging of coagulase-negative staphylococci. Int J Vet Sci Med. 2:27–34. DOI:10.1016/j.ijvsm. 2014.02.001.

HRV R, Devaki R, Kandi V. 2016. Evaluation of different phenotypic techniques for the detection of slime produced by bacteria isolated from clinical specimens. Cureus. 8:e505. DOI:10.7759/cureus.505.

Jeong DW, Lee B, Her JY, Lee KG, Lee JH. 2016. Safety and technological characterization of coagulase-negative staphylococci isolates from traditional Korean fermented soybean foods for starter development. Int J Food Microbiol. 236:9–16. DOI:10.1016/j.ijfoodmicro.2016. 07.011

Kartini S. 2020. Analisis cemaran Staphylococcus aureus pada makanan jajanan di Sekolah Dasar Kecamatan Tampan Pekanbaru. J Pharm Sci. 3:12–17.

Kho K, Meredith T. 2018. Extraction and analysis of bacterial teichoic acids. Bio Protoc. 8:e3078. DOI:10.21769/biopr otoc.3078

Kim JS, Choi Q, Jung BK, Kim JW, Kim GY. 2019. Non-hemolytic, mucinous, coagulase negative MRSA isolated from urine. KJCLS. 51:260–264. DOI:10.15324/kjcls. 2019.51.2.260.

Kord M, Ardebili A, Jamalan M, Jahanbakhsh R, Behnampour N, Ghaemi EA. 2018. Evaluation of biofilm formation and presence of ica genes in Staphylococcus epidermidis clinical isolates. Osong Public Health Res Perspect. 9:160–166. DOI:10.24171/j.phrp.2018.9.4.04.

Kusumaningrum A, Maemunah I, Seto D, Bela B. 2020. Deteksi Acinetobacter baumannii multiresisten obat penghasil biofilm menggunakan pewarnaan berbasis crystal violet. IJID 5:41-51. DOI:10.32667/ijid.v5i2.86.

Manandhar S, Singh A, Varma A, Pandey S, Shrivastava N. 2021. Phenotypic and genotypic characterization of biofilm producing clinical coagulase negative staphylococci from Nepal and their antibiotic susceptibility pattern. Ann Clin Microbiol Antimicrob. 20:41. DOI:10.1186/s12941-021-00447-6.

Motamedi H, Asghari B, Tahmasebi H, Arabestani M. 2018. Identification of hemolysine genes and their association with antimicrobial resistance pattern among clinical isolates of Staphylococcus aureus in West of Iran. Adv Biomed Res. 7:153. DOI:10.4103/abr.abr_143_18.

Nasaj M, Saeidi Z, Asghari B, Roshanaei G, Arabestani MR. 2020. Identification of hemolysin encoding genes and their association with antimicrobial resistance pattern among clinical isolates of coagulase-negative Staphylococci. BMC Res Notes. 13:68. DOI:10.1186 /s13104-020-4938-0.

Nisa HC, Purnomo BS, Damayanti TL, Hariadi M, Sidik R, Harijani N. 2019. Analisis faktor yang mempengaruhi kejadian mastitis subklinis dan klinis pada sapi perah. (Studi kasus di Koperasi Agribisnis Dana Mulya Kecamatan Pacet, Kabupaten Mojokerto). Ovozoa. 8:66-70.

Nocera FP, Ferrara G, Scandura E, Ambrosio M, Fiorito F, de Martino L. 2022. A preliminary study on antimicrobial susceptibility of Staphylococcus spp. and Enterococcus spp. grown on mannitol salt agar in european wild boar (Sus scrofa) hunted in campania region—italy. Anim. 12:85. DOI:10.3390/ani12010085.

Normanita R. 2020. Validity of congo red agar and modified Congo red agar to detect biofilm of Enterococcus faecalis. Saintika Med. 16:55. DOI:10.22219/sm.vol16.smumm1.11064.

Organji SR, Abulreesh HH, Elbanna K, Osman GEH, Almalki MHK. 2018. Diversity and characterization of Staphylococcus Spp. in food and dairy products: a foodstuff safety assessment. J Microbiol Biotechnol Food Sci. 7:586–593. DOI:10.15414/jmbfs.2018.7. 6.586-593.

Pakshir K, Bordbar M, Zomorodian K, Nouraei H, Khodadadi H. 2017. Evaluation of CAMP-Like effect, biofilm formation, and discrimination of candida africana from vaginal Candida albicans Species. J Pathog. 2017:1–5. DOI:10.1155/2017/7126258.

Panawala L. 2017. Difference between Gram-positive and Gram-negative bacteria. Pediaa. https://pediaa.com/difference-between-gram- positive-and- gram-negative- bacteria/.

Panjuni MM, Abdi Firdaus F, Kustiawan E, Subagja H, Syaniar TM. 2021. Pengobatan mastitis pada sapi perah Peranakan Mastitis treatment for Peranakan Friesian Holstein dairy cattle at UPT Pembibitan Ternak dan Hijauan Makanan Ternak Kediri. Awaludin A, Ningsih N, Andriani M, Adhyatma, Dewi AC, Syaikhullah G, Muhamad N, Nurfitriani RA, editors. Proceeding The 2nd Conference of Applied Animal Science. Jember (Indones): Pusat Penelitian dan Pengabdian Masyarakat Universitas Jember. p. 138-145. DOI:10.25047/an impro.2021.18.

Pedersen RR, Krömker V, Bjarnsholt T, Dahl-Pedersen K, Buhl R, Jørgensen E. 2021. Biofilm Research in Bovine Mastitis. Front Vet Sci. 8. DOI:10.3389/fvets.2021 .656810.

Pinheiro L, Brito CI, de Oliveira A, Martins PYF, Pereira VC, da Cunha M de LR de S. 2015. Staphylococcus epidermidis and Staphylococcus haemolyticus: Molecular detection of cytotoxinand enterotoxin genes. Toxins (Basel). 7:3688–3699. DOI:10.3390/toxins 7093688.

Pribadi AD, Yudhana A, Chusniati S. 2020. Isolasi dan identifikasi Streptococcus sp. dari sapi perah penderita mastitis subklinis di Purwoharjo Banyuwangi. J Med Vet. 3:51. DOI:10.20473/jmv.vol3.iss1.2020.51-56

Purwanti MAD, Besung INK, Suarjana IGK. 2018. Deteksi bakteri Staphylococcus sp. dari saluran pernapasan babi. Bul Vet Udayana. 2:201. DOI:10.24843/bulvet .2018.v10.i02.p15.

Raksha, L., Gangashettappa, N., Shantala, G., Nandan, B., Sinha, D. 2020. Study of biofilm formation in bacterial isolates from contact lens wearers. Indian J Ophthalmol. 68:23–28. DOI:10.4103/ijo.IJO_947_19.

Rahmi Y, Abrar M, Jamin F, Yudha Fahrimal dan. 2015. Identification of Staphylococcus aureus in preputium and vagina of horses (Equus caballus). J Med Vet. 9:154-158. DOI: DOI:10.21157/j.med.vet..v9i2.3805.

Roman MD, Bocea BA, Ion NIC, Vorovenci AE, Dragomirescu D, Birlutiu RM, Birlutiu V, Fleaca SR. 2023. are there any changes in the causative microorganisms isolated in the last years from hip and knee periprosthetic joint infections? antimicrobial susceptibility test results analysis. Microorganisms. 11. DOI:10.3390/microor ganisms11010116.

Ryman VE, Kautz FM, Nickerson SC. 2021. Case study: Misdiagnosis of non-hemolytic staphylococcus aureus isolates from cases of bovine mastitis as coagulase-negative staphylococci. Animals. 11:1–8. DOI:10.3390/ani11020252.

Shrestha LB, Bhattarai NR, Khanal B. 2017. Antibiotic resistance and biofilm formation among coagulase-negative staphylococci isolated from clinical samples at a tertiary care hospital of eastern Nepal. Antimicrob Resist Infect Control. 6. DOI:10.1186/s13756-017-0251-7.

Schönborn S, Wente N, Paduch JH, Krömker V. 2017. In vitro ability of mastitis causing pathogens to form biofilms. J Dairy Res. 84:198–201. DOI: 10.1017/S0022029917000218

Suwito W, Nugroho WS, Wahyuni AETH, Sumiarto B. 2021. Antimicrobial resistance in coagulase-negative staphylococci isolated from subclinical mastitis in Ettawa crossbred goat (PE) in Yogyakarta, Indonesia. Biodiversitas. 22:3418–3422. DOI:10.13057/biodiv/ d220650.

Tam K, Torres VJ. 2019. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol Spectr. 7. DOI:10.1128/microbiolspec.gpp3-0039-2018.

Tariq S, Tabassum S, Aslam S, Sillanpaa M, Al-Qahtani WH, Ali S. 2021. Detection of virulence genes and biofilm forming capacity of diarrheagenic e. Coli isolated from different water sources. Coatings. 11. DOI:10.3390/coatings11121544.

Thairu Y, Usman Y, Nasir I. 2014. Laboratory perspective of gram staining and its significance in investigations of

infectious diseases. Sub-Saharan Afric J Med. 1:168. DOI:10.4103/2384-5147.144725.

Thakur P, Nayyar C, Tak V, Saigal K. 2017. Mannitol-fermenting and tube coagulase-negative Staphylococcal isolates: unraveling the diagnostic dilemma. J Lab Physicians. 9:064–065. DOI:10.4103/0974-2727.187924.

Thilakavathy P, Vasantha Priyan RM, Jagatheeswari PAT, Charles J, Dhanalakshmi V, Lallitha S, Rajendran T, Divya B. 2015. Evaluation of Ica gene in comparison with phenotypic methods for detection of biofilm production by coagulase negative Staphylococci in a tertiary care hospital. J Clin Diagnos Res. 9:DC16–DC19. DOI:10.7860/JCDR/2015/11725.6371.

Urip U, Pratiwi NY, Tatontos EY, Diarti MW. 2022. Potensi tepung biji kecipir (Psophocarpus tetragonolobus) sebagai bahan alternatif sumber nitrogen dalam media mannitol salt agar (MSA) untuk pertumbuhan Staphylococcus aureus. Bioscientist : J Ilmiah Biol. 10:1174. DOI:10.33394/bioscientist.v10i2.6138.

Vanderhaeghen W, Piepers S, Leroy F, van Coillie E, Haesebrouck F, de Vliegher S. 2014. Invited review: Effect, persistence, and virulence of coagulase-negative Staphylococcus species associated with ruminant udder health. J Dairy Sci. 97:5275–5293). DOI:10.3168 /jds.2013-7775.

Virgianti DP, Suhartati R, Khusnul. 2019. Clitoria ternatea Linn Extract as Natural pH Indicator in Mannitol Salt Agar Medium. Advances in Health Sciences Research. 26:326–328. DOI:10.1128/mBio.02660-18.

Windria S, Widianingrum DC, Salasia SIO. 2016. Identification of staphylococcus aureus and coagulase negative staphylococci isolates from mastitis milk of etawa crossbred goat. Res J Microbiol. 11:11–19. DOI:10.3923/jm.2016.11.19

Yarbrough LM, Hamad Y, Burnham C-AD, George IA. 2018. Comparative analysis of the wako ?-glucan test and the fungitell assay for diagnosis of candidemia and Pneumocystis jirovecii pneumonia. J Clin Microbiol. 56. DOI:10.1128/JCM.

Yuan F, Yin S, Xu Y, Xiang L, Wang H, Li Z, Fan K, Pan G. 2021. The richness and diversity of catalases in bacteria. Front Microbiol. 12. DOI:10.3389/fmicb.2021.645477.

Zeinhom MMA, AbedAH, Hashem KS. 2013. A contribution towards milk enzymes, somatic cell count and bacterial pathogens associated with subclinical mastitis cows milk. 59:38-48. DOI:10.21608/avmj.2013.171607

Zhao W, Yu D, Cheng J, Wang Y, Yang Z, Yao X, Luo Y. 2020. Identification and pathogenicity analysis of Streptococcus equinus FMD1, a beta-hemolytic strain isolated from forest musk deer lung. Journal of Veterinary Medical Science. 82:172–176. DOI:10.1292/jvms.19-0566.

Refbacks

  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.