Molecular Characteristics and Evolutionary Relationships of Toll-Like Receptor (TLR21) of Indonesian KUB-1 Chicken
Abstract
In vertebrates, the immune system has several Toll-like receptors (TLRs) to recognize specific pathogen-associated molecular patterns (PAMPs). In aves, TLR21 is known to be a functional homolog of TLR9 in mammals. This study aimed to determine the molecular characteristics of TLR21 in KUB-1 chicken, a superior breed of Indonesian local chicken, and their evolutionary relationship. The TLR21 gene was obtained from the ovarian RNA extraction and synthesized into cDNA by reverse transcription. We found that the cDNA sequence of the TLR21 of KUB-1 chicken has a length of 3504 bp, including a 2823 bp open reading frame (ORF), which encodes a putative protein of 940 amino acids (aa). The deduced KUB-1 chicken TLR21 protein consisted of 720 aa in the extracellular domain containing 20 LRRs, 23 aa in the transmembrane region, and 141 aa of Tollâ€ILâ€1 receptor in the intracellular domain, and had a molecular weight of 107 kDa. The KUB-1 chicken TLR21 had homology of about 99%, 76%, and 43% with other TLR21 from other breeds of chicken, non-chicken poultry, and fish, respectively. Its molecular character was conserved throughout the evolution of TLR21 in chicken, so the KUB-1 chicken was not much different from the broiler. However, there has been an evolution in duck and goose, although the function is still the same. Evolutionarily, Gallus gallus_KUB-1 TLR21, which belongs to the TLR11 Family, has differentiated from fish TLR21 and formed a paraphyletic relationship with TLR21 in Anser cygnoides and Anas platyrhynchos.
Keywords
Full Text:
PDFReferences
Batkhishig D, Enkhbayar P, Kretsinger RH, Matsushima N. 2020. A strong correlation between consensus sequences and unique super secondary structures in leucine rich repeats. Prot Struct Funct Bioinform. 88:840–852. DOI:10.1002/prot.25876.
Chen X, Sun X, Chimbaka IM, Qin N, Xu X, Liswaniso S, Xu R, Gonzalez JM. 2021. Transcriptome analysis of ovarian follicles reveals potential pivotal genes associated with increased and decreased rates of chicken egg production. Front Gen. 12. DOI:10.3389/fgene. 2021.622751.
Chuang YC, Tseng JC, Yang JX, Liu YL, Yeh DW, Lai CY, Yu GY, Hsu LC, Huang CM, Chuang TH. 2020. Toll-like receptor 21 of chicken and duck recognize a broad array of immunostimulatory cpg-oligodeoxynucleotide sequences. Vaccin, 8:1–17. DOI:10.3390/vaccines80 40639
Fitzgerald KA, Kagan JC. 2020. Toll-like Receptors and the control of immunity. Cell. 180:1044–1066. DOI:10. 1016/j.cell.2020.02.041.
Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. 2017. Protein-Sol: A web tool for predicting protein solubility from sequence. Bioinform. 33:3098–3100. DOI:10.1093/bioinformatics/btx345.
Juul-Madsen HR, Viertlböeck B, Härtle S, Smith AL, Göbel TW. 2013. Innate immune responses. in avian immunology: 2nd ed. p. 121–147. DOI:10.1016/B978-0-12-396965-1.00007-8.
Kaiser MG, Hsieh J, Kaiser P, Lamont SJ. 2022. Differential immunological response detected in mRNA expression profiles among diverse chicken lines in response to Salmonella challenge. Poult Sci. 101:101605. DOI:10. 1016/j.psj.2021.101605.
Keestra AM, de Zoete MR, Bouwman LI, Vaezirad MM, Van Putten JPM. 2013. Unique features of chicken Toll-like receptors. Develop Comp Immunol. 41:316-323. DOI:10.1016/j.dci.2013.04.009.
Lai CY, Yu GY, Luo Y, Xiang R, Chuang TH. 2019. Immunostimulatory activities of CpG-oligodeoxynucleotides in teleosts: Toll-like receptors 9 and 21. Front Immunol. 10:179. DOI:10.3389 /fimmu.2019.00179
Li H, Li T, Guo Y, Li Y, Zhang Y, Teng N, Zhang F, Yang G. 2018. Molecular characterization and expression patterns of a non-mammalian toll-like receptor gene (TLR21) in larvae ontogeny of common carp (Cyprinus carpio L.) and upon immune stimulation. BMC Vet Res. 14:153. DOI:10.1186/s12917-018-1474-4.
Manavalan B, Basith S, Choi S. 2011. Similar structures but different roles-an updated perspective on TLR structures. Front Physiol. 2:41. DOI:10.3389 /fphys.2011.00041.
Matsushima N, Miyashita H, Enkhbayar P, Kretsinger RH. 2015. Comparative geometrical analysis of leucine-rich repeat structures in the NOD-like and Toll-like receptors in vertebrate innate immunity. Biomol. 5: 1955-1978. DOI:10.3390/biom5031955.
Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y. 2007. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Gen. 8:1224. DOI:10.1186/1471-2164-8-124.
Mokhtari Y, Pourbagheri-Sigaroodi A, Zafari P, Bagheri N, Ghaffari SH, Bashash D. 2021. Toll-like receptors (TLRs): An old family of immune receptors with a new face in cancer pathogenesis. J Cell Mol Med. 25:639–651. DOI:10.1111/jcmm.16214.
Nawab A, An L, Wu J, Li G, Liu W, Zhao Y, Wu Q, Xiao M. 2019. Chicken toll-like receptors and their significance in immune response and disease resistance. Int Rev Immunol. 38:284–306. DOI:10.1080/08830185.2019. 1659258.
Nie R, Zheng X, Zhang W, Zhang B, Ling Y, Zhang H, Wu C. 2022. Morphological characteristics and transcriptome landscapes of chicken follicles during selective development. Anim. 12:713. DOI:10.3390/ani12060713.
Popa GL, Popa MI. 2021. Salmonella spp. Infection–a continuous threat worldwide. GERMS. 11:88-96. DOI:10.18683/germs.2021.1244.
Priyathilaka TT, Elvitigala DAS, Whang I, Lim BS, Jeong HB, Yeo SY, Choi CY, Lee J. 2014. Molecular characterization and transcriptional analysis of non-mammalian type Toll like receptor (TLR21) from rock bream (Oplegnathus fasciatus). Gen. 553:105–116. DOI:10.1016/j.gene.2014.10.008.
Rehman MS, Rehman S, Yousaf W, Hassan FU, Ahmad W, Liu Q, Pan H. 2021. The potential of Toll-Like receptors to modulate avian immune system: exploring the effects of genetic variants and phytonutrients. Front Genet. 12: 671235. DOI:10.3389/fgene.2021.671235.
Ruan W, An J, Wu Y. 2015. Polymorphisms of chicken TLR3 and 7 in different breeds. PLoS ONE. 10:e0119967. DOI:10.1371/journal.pone.0119967.
Sartika T, Iskandar S. 2019. The productivity of 4th generation KUB-2 chicken. JITV. 24:151-157. DOI:10.14334 /jitv.v24i4.2033.
Song W, Wang J, Han Z, Zhang Y, Zhang H, Wang W, Chang J, Xia B, Fan S, Zhang D, Wang J, Wang HW, Chai J. 2015. Structural basis for specific recognition of single-stranded RNA by Toll-like receptor 13. Nat Struct Mol Biol. 22:782-787. DOI:10.1038/nsmb.3080.
St. Paul M, Brisbin JT, Abdul-Careem MF, Sharif S. 2013. Immunostimulatory properties of Toll-like receptor ligands in chickens. Vet Immunol Immunopathol. 152:191-199. DOI:10.1016/j.vetimm.2012.10.013.
Åšwiderská Z, Å mÃdová A, Buchtová L, Bryjová,A, Fabiánová A, Munclinger P, Vinkler M. 2018. Avian Toll-like receptor allelic diversity far exceeds human polymorphism: an insight from domestic chicken breeds. Sci Rep. 8:17878. DOI:10.1038/s41598-018-36226-1.
Tamzil MH, Indarsih B. 2022. Revisit the development of native Indonesian chickens from Red Jungle Fowls (Gallus gallus bankiva) to commercial chickens. Wartazoa. 32. DOI:10.14334/wartazoa.v32i1.2585.
Wang J, Zhang Z, Liu J, Zhao J, Yin D. 2016. Ectodomain architecture affects sequence and functional evolution of vertebrate Toll-like receptors. Sci Rep. 6. DOI:10.1038/srep26705.
Wicherskaâ€pawÅ‚owska K, Wróbel T, Rybka J. 2021. Tollâ€like receptors (TLRs), nodâ€like receptors (NLRs) and rigâ€iâ€like receptors (RLRs) in innate immunity. tlrs, nlrs and rlrs ligands as immunotherapeutic agents for hematopoietic diseases. Int J Mol Sci. 22:13397. DOI:10.3390/ijms 222413397.
Wigley P. 2014. Salmonella enterica in the chicken: How it has helped our understanding of immunology in a non-biomedical DOI:10.3389/fimmu.2014.00482.
Winaya A, Fahmiady DI, Suyatno S, Malik A, Mahmud A, Jaganathan R. 2023. Morphometric diversity and genetic relationship of “Bangkok†chicken (Thai Game Fowl) in East Java, Indonesia. JJBS. 16:189-197. DOI:10.543 19/jjbs/160203.
Wu H, Wang H, Jiang W, Lian Z. 2018. The evolutionary characteristics and structural biology of Gallus Toll-like receptor 21. J Mol Recognit. 31:e2696. DOI:10.1002/jmr.2696.
Yeh DW, Liu YL, Lo YC, Yuh CH, Yu GY, Lo JF, Luo Y, Xiang R, Chuang TH. 2013. Toll-like receptor 9 and 21 have different ligand recognition profiles and cooperatively mediate activity of CpG-oligodeoxynucleotides in zebrafish. Proc Natl Acad Sci USA. 110:20711-20716. DOI:10.1073/pnas.13052 73110.
Zhang Z, Ohto U, Shibata T, Krayukhina E, Taoka M, Yamauchi Y, Tanji H, Isobe T, Uchiyama S, Miyake K, Shimizu T. 2016. Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immun. 45:737-748. DOI:10. 1016/j.immuni.2016.09.011
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.