Fermentation of Cocoa Pods Husk Using Turmeric Powder and Aspergillus niger: Effects on Fiber Composition and Antinutrients

I Gede Mahardhika Atmaja, Ismartoyo Ismartoyo, Asmuddin Natsir, Syahriani Syahrir

Abstract

Processing of cocoa pods husk (CPH) by fermentation with Aspergillus niger (A. niger) and additional herbs such as turmeric is believed to be able to improve the quality of feed ingredients from plantation byproducts.  The purpose of this study was to evaluate the effectiveness of the fermentation process using A. niger and the addition of different levels of turmeric in reducing the fiber fraction and antinutrient contents of CPH.  The experiment used a completely randomized design of eight treatments and three replications.  The treatments consisted of P0: control; P1: CPH fermented with A. niger; P2, P3 and P4: fermented (CPH + 0.5; 1.0 and 1.5% turmeric powder) with A. niger; P5, P6 and P7: fermented CPH with A. niger + 0.5; 1.0 and 1.5 % turmeric powder. Variables observed were the fiber composition of CPH  as well as antinutrients.  The results showed that CPH fermentation using A. niger with different levels of turmeric powder significantly reduced the content of fiber fractions, i.e., NDF, ADF, and hemicellulose, compared to that of unfermented CPH.  For antinutritional content, fermentation using A. niger with different levels of turmeric powder significantly decreased tannin.  It tended to decrease the lignin content of CPH compared to unfermented CPHs.  In conclusion, fermentation of CPH using A. niger with an addition of 1.5% of turmeric before the fermentation is the most effective treatment in decreasing the fiber and antinutritional Components In CPH.

Keywords

Antinutritional; Aspergillus niger; Cocoa Pods Husk; Fiber Fraction; Turmeric

Full Text:

PDF

References

Adamafio NA. 2013. Theobromine toxicity and remediation of cocoa byproducts: An overview. J Biol Sci. 13:570–576. DOI:10.3923/jbs.2013.570.576.

Agus A, Budisatria IGS. 2012. Performa domba yang diberi complete feed kulit buah kakao terfermentasi. Bul Peternak. 36:162–168. DOI:10.21059/buletinpeternak. v36i3.1624.

Aliwarga L, Victoria A V. 2019. Pengendapan titanium pada larutan pasis besi dalam asam sulfat. Acid Solut. 15:109–118. DOI:10.30556/jtmb.Vol15.No2.2019.989.

Ananda S. 2021. Pengaruh lama inokulasi ampas sagu (Metroxylon sagu) dengan Aspergillus niger terhadap kandungan ADF Dan NDF ampas sagu. J Peternak Sriwij. 10:1–7. DOI:10.33230/JPS.10.1.2021.12388.

Bentil JA, Dzogbefia VP, Alemawor F. 2015. Enhancement of the nutritive value of cocoa (Theobroma cacao) bean shells for use as feed for animals through a two-stage solid state fermentation with Pleurotus ostreatus and Aspergillus niger. Int J Appl Microbiol Biotechnol Res. 3:20–30.

Berlian Z, Pane ER, Hartati S. 2017. Efektivitas kunyit (Curcuma domestica) Sebagai pereduksi formalin pada tahu. J SainHealth. 1:1–14.

Carniel FC, Fortuna L, Zanelli D, Garrido M, Vázquez E, González VJ, Prato M, Tretiach M. 2021. Graphene environmental biodegradation: Wood degrading and saprotrophic fungi oxidize few-layer graphene. J Hazard Mater. 414:125553. DOI:10.1016/j.jhazmat.2021.125 553.

Chávez-González ML, Guyot S, Rodríguez-Herrera R, Prado-Barragán A, Aguilar CN. 2018. Exploring the degradation of gallotannins catalyzed by tannase produced by Aspergillus niger GH1 for ellagic acid production in submerged and solid-state fermentation. Appl Biochem Biotechnol. 185:476–483. DOI:10.1007 /s12010-017-2663-5.

Chávez-González ML, Rodríguez-Duran L V, Buenrostro-Figueroa JJ, Sepúlveda-Torre L, Ascacio-Valdés JA, Rodríguez-Herrera R, Aguilar CN. 2018. Tannin degrading enzymes: catalytic properties and technological perspectives. J Enzym Food Technol. 7:125–141. DOI:10.1007/978-981-13-1933-4_7.

Cobra LS, Amini HW, Putri AE. 2019. Skirining fitokimia ekstrak sokhletasi rimpang kunyit (Curcuma longa) dengan pelarut etanol 96 %. J Ilm Kesehat Karya Putra Bangsa. 1:12–17.

Cornelis MC, Kacprowski T, Menni C, Gustafsson S, Pivin E, Adamski J, Artati A, Eap CB, Ehret G, Friedrich N. 2016. Genome-wide association study of caffeine metabolites provides new insights into caffeine metabolism and dietary caffeine-consumption behavior. Hum Mol Genet. 25:5472–5482. DOI:1093/hmg/ddw334.

Dalimunthe M, Purnama D, Jasmidi J, Amdayani S, Annazilli H, Sihombing JL. 2021. Teknologi pakan ternak silase dari limbah pelepah daun kelapa sawit di Desa Perkebunan Amal Tani. JPKM TABIKPUN. 2:47–54. DOI:10.23960/jpkmt.v2i1.22.

Ergina E, Nuryanti S, Pursitasari ID. 2014. Uji kualitatif senyawa metabolit sekunder pada daun palado (Agave angustifolia) yang diekstraksi dengan pelarut air dan etanol. J Akad Kim. 3:165–172.

Fransistika R, Idiawati N, Dest L. 2013. Pengaruh waktu fermentasi campuran trichoderma reesei dan Aspergillus niger terhadap kandungan protein dan serat kasar ampas sagu. JKK. 1:35-39.

Haruna H, Rasbawati R. 2020. Optimalisasi hara in situ melalui intergrasi tanaman dan ternak:. J Din Pengabdi. 6:62–70. DOI:10.20956/jdp.v6i1.9416.

Khanifah F, Puspitasari E, Awwaludin S. 2021. Uji kualitatif flavonoid, alkaloid, tanin pada kombinasi kunyit (Curcuma longa) cokat (Theobroma cacao L). J Sains dan Terap Kim. 15:91–99.

Lekshmi R, Nisha SA, Vasan PT, Kaleeswaran B. 2021. A comprehensive review on tannase: Microbes associated production of tannase exploiting tannin-rich agro-industrial wastes with special reference to its potential environmental and industrial applications. Environ Res. 201:111625. DOI:10.1016/j.envres.2021.111625.

Lim J, Nguyen TTH, Pal K, Park C, Kim SW, Kim D. 2021. Phytochemical properties and functional characteristics of wild turmeric (Curcuma aromatica) fermented with Rhizopus oligosporus. Food Chem X. 13:100198. DOI:10.1016/j.fochx.2021.100198.

Maulana F, Nuraini N, Mirzah M. 2021. Kandungan dan kualitas nutrisi limbah sawit fermentasi dengan Lentinus edodes. JPI. 23:174–182.

Noto MS. 2015. Efektivitas pendekatan metakognisi terhadap penalaran matematis pada matakuliah geometri transformasi. Infin. 4:22–31. DOI:10.22460/infinity. v4i1.p22-31.

Nurdin AJ, Muwakhid B, Wadjdi MF. 2021. Pengaruh tingkat penambahan Aspergillus niger pada haylase complate feed berbasis bagas tebu dan kotoran ayam kering terhadap kandungan neutral detergent fiber (NDF) dan selulosa. Din Rekasatwa. 1:90-93.

Peng F, Peng P, Xu F, Sun R-C. 2012. Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv. 30(4):879–903.

Rahmat G. 2020. Pemamfaatan Campuran Limbah Sawit dan Deda Padi Yang Difermentasi Dengan Pleurotus ostreatus Dalam Ransum Terhadap Performa Dan Kualitas Telur Puyuh.

Rakhmani SI, Purwadaria T. 2018. Improvement of nutritional value of cocoa pod husk fermented with Aspergillus spp. and two levels of urea and ammonium sulphate. J Ilmu Ternak dan Vet. 22(3):101. https://doi.org/10.14334/jitv.v22i3.1670

Renreng I, Soenoko R, Pratikto, Irawan YS. 2017. Effect of turmeric (Curcumae longae) treatment on morphology and chemical properties of Akaa (Corypha) single fiber. J Eng Sci Technol. 12(8):2229–2237.

Sartini S, Asri RM, Ismail I. 2017. Pengaruh pra perlakuan sebelum pengeringan sinar matahari dari kulit buah kakao terhadap kadar komponen fenolik dalam ekstrak. Bioma J Biol Makassar. 2(1):15–20.

Setiawan G. 2014. Pengaruh Penambahan Mikroba Lokal (MOL) Terhadap Kadar Neutral Detergent Fiber Dan Acid Detergent Fiber Pada Ransum Lengkap Terfermentasi. Students e-Journal. 3(2).

Sidiq F, Wardani WW. 2014. Aktivitas anti-oksidan dari curcumin dalam mengurangi dampak stres oksidatif pada unggas yang terpapar cekaman panas. Trouw Add Sci. 3:1–3.

Sulasiyah S, Sarjono PR, Aminin ALN. 2018. Antioxidant from Turmeric Fermentation Products (Curcuma longa) by Aspergillus Oryzae. J Kim Sains dan Apl. 21(1):13–18.

Summers RM, Mohanty SK, Gopishetty S, Subramanian M. 2015. Genetic characterization of caffeine degradation by bacteria and its potential applications. Microb Biotechnol. 8(3):369–378.

Suryanto E, Bulkaini B, Ashari A, Karda IW. 2014. Carcass quality, marbling and cholesterol content of male Bali cattle fed fermented cocoa shell. J Indones Trop Anim Agric. 39(4):249–255.

Syafira L. 2022. Penerapan autoregressive distribusi lag (ARDL) pada prediksi produksi kakao indonesia. J Math UNP. 7(3):74–82.

Udayani NNW, Ratnasari NLAM, Nida IDAAY. 2022. Penetapan Kadar Senyawa Fitokimia (Alkaloid, Flavonoid dan Tanin) pada Ekstrak Etanol Rimpang Kunyit Hitam (Curcuma caesia Roxb.). J Pendidik Tambusai. 6(1):2088–2093.

Wasmun H, Rahim A, Hutomo GS. 2016. Pembuatan minuman instan fungsional dari bioaktif pod husk kakao. AGROTEKBIS E-JURNAL ILMU Pertan. 4(6):650–658.

Yahya MA, Al-Qodah Z, Ngah CWZ. 2015. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew Sustain Energy Rev. 46:218–235.

Yamaoka-Yano DM, Mazzafera P. 1999. Catabolism of caffeine and purification of a xanthine oxidase responsible for methyluric acids production in Pseudomonas putida L. Rev Microbiol. 30:62–70.

Yasa PI, Winata I, Oktavianawati I. 2015. Studi Kadar Kurkumin Hasil Fermentasi Kunyit (Curcuma longa) Dengan EM4 Menggunakan Metode KLT-Densitometri. :67–69.

Yusriani Y, Puastuti W. 2020. Implementasi Silase Kulit Buah Kakao dan Zinc-Metionin pada Ransum Kambing Boerka di Kabupaten Pidie Jaya. In: Pros Semin Nas Teknol Peternak dan Vet. [place unknown]; p. 428–437.

Zhang W, Xue B, Li M, Mu Y, Chen Z, Li J, Shan A. 2014. Screening a strain of Aspergillus niger and optimization of fermentation conditions for degradation of aflatoxin B1. Toxins (Basel). 6(11):3157–3172.

Refbacks

  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.