Novel Mutation of Exon 5 Prolactin Gene in IPB-D1 Chicken

Lailatul Rohmah, Sri Darwati, Niken Ulupi, Isyana Khaerunnisa, Cece Sumantri

Abstract

The prolactin gene (PRL) is a gene that controls the incubation and egg production in laying chickens. The nature of incubation will reduce egg production and disrupt the reproductive system in local chickens. The purpose of this study was to identify the polymorphism of prolactin genes in IPB-D1 chickens using the direct sequencing method. The polymorphism of the exon 5 prolactin gene was carried out on 46 samples of IPB-D1 chicken DNA which was a collection of the Division of Animal Genetics and Breeding, Faculty of Animal Science IPB. DNA sequences as a reference for designing exon 5 primers were obtained from the National Center for Biotechnology Information (NCBI) with the GenBank access code: AF288765.2. DNA extraction was carried out using the phenol-chloroform technique. DNA amplification resulted in a PCR product with a size of 557 bp. In this study, the genotype frequency, allele frequency, heterozygosity value and Hardy-Weinberg equilibrium were calculated. The results of the study found 5 SNPs in exon 5, namely g.7823A>G, g.7835A>G, g.7886T>A, g.8052T>C, and g.8069T>C. All SNPs are polymorphic and in Hardy-Weinberg equilibrium except g.8052T>C. The g.7823A>G, g.7835A>G, g.8052T>C SNPs are synonymous mutations that do not change amino acids, while the g.7886T>A and g.8069T>C SNPs are non-synonymous that change amino acids. Both g.7886T>A and g.8069T>C SNPs are potential as a marker assisted selection for the characteristics of egg production in IPB-D1 chickens.

Keywords

IPB-D1 Chicken, Mutation, Prolactin Gene, SNP

Full Text:

PDF

References

Alzohairy AM. 2011. BioEdit: An important software for molecular biology. GERF Bull Biosci. 2:60–61.

Botstein D, White R, Skolnick M, Davis R. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 32:314–31.

Castle WE. 1903. The Laws of Heredity of Galton and Mendel, and Some Laws Governing Race Improvement by Selection. Proc Am Acad Arts Sci. 39:223.

Cholifah U. 2018. Produktivitas ayam persilangan pelung sentul kampung ras pedaging (PSKM) G3 pada umur 12 minggu sampai produksi telur. [Bogor(Indones)]:IPB University.

[DJPKH] Direktorat Jenderal Peternakan dan Kesehatan Hewan. 2019. Statistik Peternakan dan Kesehatan Hewan 2019. Jakarta (Indones): Direktorat Jenderal Peternakan dan Kesehatan Hewan-Kementerian Pertanian RI.

Dubey R. 2014. Advanced Biotechnology. New Delhi (IN): S. Chand.

Erehehuara. 2003. Studies on the SNP of the chicken’s prolactingene. [Wuhan (China)]: Huazhong Agricultural University.

Ferst A. 2017. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. New Jersey (US): World Scientific.

Habiburahman R, Darwati S, Sumantri C, Rukmiasih. 2020. Produksi Telur dan kualitas telur ayam IPB D-1 G7 serta pendugaan nilai ripitabilitasny. J Ilmu Produksi dan Teknol Has Peternak. 8:97–101.

Hartl D, Clark A. 2000. Principles of Population Genetics. 3rd ed. Massachusetts (USA): Sinaeus Assosiatess Inc.

Hidayat C, Asmarasari SA. 2015. Native chicken production in Indonesia: a review. J Peternak Indones. 17:1–11.

Karabağ K, Balcıoğlu MS, Karlı T, Alkan S. 2016. Determination of genetic diversity using 15 simple sequence repeats markers in long term selected Japanese quail lines. Asian-Australasian J Anim Sci. 29:1696–1701.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Battistuzzi FU, editor. Mol Biol Evol. 35:1547–1549.

Li H-F, Shu J-T, Du Y-F, Shan Y-J, Chen K-W, Zhang X-Y, Han W, Xu W-J. 2013. Analysis of the genetic effects of prolactin gene polymorphisms on chicken egg production. Mol Biol Rep. 40:289–294.

Luo G-H, Li X-H, Han Z-J, Zhang Z-C, Yang Q, Guo H-F, Fang J-C. 2016. Transition and transversion mutations are biased towards gc in transposons of chilo suppressalis (Lepidoptera: Pyralidae). Genes (Basel). 7:72.

Muladno. 2010. Teknologi Rekayasa Genetika. 2nd ed. Bogor (Indones): IPB Press.

Murray R, Bender D, Botham K, Jennely P, Rodwell V, Weil P. 2014. Biokimia Harper. 29th ed. Jakarta (Indones): EGC.

Nagasundaram N, Zhu H, Liu J, V K, C GPD, Chakraborty C, Chen L. 2015. Analysing the Effect of Mutation on Protein Function and Discovering Potential Inhibitors of CDK4: Molecular Modelling and Dynamics Studies. Salsbury F, editor. PLoS One. 10:e0133969.

Nascimento G, Murakami A, Ospina-Rojas I, Diaz-Vargas M, Picoli K, Garcia R. 2016. Digestible valine requirements in low-protein diets for broilers chicks. Rev Bras Ciência Avícola. 18:381–386.

[NCBI] National Center for Biotechnology Information. 2020a. PubChem Compound Summary for CID 6287, Valine. [accessed September 28th, 2020]. https://pubchem.ncbi.nlm.nih.gov/compound/Serine

[NCBI] National Center for Biotechnology Information. 2020b. PubChem Compound Summary for CID 5951, Serine. [accessed September 29, 2020]. https://pubchem.ncbi.nlm.nih.gov/compound/Serine

Nei M, Kumar S. 2000. Molecular Evolution and Phylogenetics. New York (US): Oxford Univ Pr.

Osman MMM, Hemeda SA, Hassanin AAI, Husseiny WA. 2018. Polymorphism of prolactin gene and its association with egg production trait in four commercial chicken lines. J Hell Vet Med Soc. 68:391–404.

Plant T, Zeleznik Z. 2014. Knobil and Neill’s Physiology of Reproduction. London (UK): Academic Press.

Radhakrishnan A, Raju R, Tuladhar N, Subbannayya T, Thomas JK, Goel R, Telikicherla D, Palapetta SM, Rahiman BA, Venkatesh DD, et al. 2012. A pathway map of prolactin signaling. J Cell Commun Signal. 6:169–173.

Sambrook J, Russell DW. 2001. Molecular cloning : a laboratory manual. 3rd ed. New York (US): Cold Spring Laboratory Press.

Sartika T. 2005. Peningkatan mutu bibit ayam kampung melalui seleksi dan pengkajian penggunaan penanda genetik promoter prolaktin dalam MAS/Market Assisted Selection untuk mempercepat proses seleksi. [Bogor (Indones)]: Institut Pertanian Bogor.

Sauna ZE, Kimchi-Sarfaty C. 2011. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 12:683–691.

Sharp PJ, Scanes CG, Williams JB, Harvey S, Chadwick A. 1979. Variation in concentrations of prolactin, luteinizing hormone, growth hormone and progesteron in the plasma of broody Bantams (Gallus domesticus). J Endocrinol. 80:51–57.

Sherwood L, Klandorf H, Yancey P. 2005. Animal Physiology: From Genes to Organisms. Boston (USA): Cengage Learning.

Sinurat A, Santoso, Juarini E, Sumanto, Murtisari T, Wibowo B. 1992. Peningkatan produktivitas ayam buras melalui pendekatan sistem usaha tani pada peternak kecil. Ilmu dan Peternak. 5:73–77.

Sumantri C, Darwati S. 2017. Perkembangan terkini riset ayam unggul IPB-D1. In: Pros Semin Nas Ind Peternak. Bogor (Indones): Fakultas Peternakan, Institut Pertanian Bogor; p. 3–7.

Supek F, Miñana B, Valcárcel J, Gabaldón T, Lehner B. 2014. Synonymous mutations frequently act as driver mutations in human cancers. Cell. 156:1324–1335.

Treves DS. 2010. Review of three DNA analysis applications for use in the microbiology or genetics classroom. J Microbiol Biol Educ. 11:186–187.

Wang J, Raskin L, Samuels DC, Shyr Y, Guo Y. 2015. Genome measures used for quality control are dependent on gene function and ancestry. Bioinformatics. 31:318–323.

Weir BS. 1996. Genetic data analysis II: methods for discrete population genetic data. Sunderland (UK): Sinauer Associates Inc.

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. 2012. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 13:134.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.