Effect of Combination of Follicle Size, FSH and Cysteamine on In Vitro Production of Sheep Embryos

Omar Mardenli, Mahdi Saleh Mohammad, Ahmad Yaser Alolo

Abstract

The participatory relationship among the follicle size, follicle stimulating hormone (FSH), and cysteamine (antioxidant agent) contribute to the production of embryos characterized by abundance and good quality. The aim of this study was to evaluate the efficacy of FSH, cysteamine and follicle size on in vitro embryo production of Awassi sheep oocytes. Follicles sizes were determined into two groups: small follicles (1-2 mm) and large follicles (> 2 mm). Oocytes were matured across two increasingly shared levels of FSH and cysteamine: A (40 ng/ml + 50 μM) and B (60 ng/ml + 100 μM). Results of the bilateral interaction showed significant differences across the follicle size (large follicles group) and the maturation treatment (B medium) in the rates of fertilization (highest value: 67.51%; p= 0.02), cleavage (highest value: 65.41%; p= 0.01), 2-16 cell stage (lowest value: 2.29%; p= 0.0001), blastocyst stage (highest value: 44.82%; p= 0.04), down to morula stage arrest (lowest value: 55.17%; p= 0.04) and Type I embryos (highest value: 52.87%; p= 0.03). Likewise, matured oocytes of small follicles group (B medium) attained the highest rate of morula stage (56.60%; p= 0.03). No significant differences were observed in Type II and Type III embryos. In order to obtain high yields of good quality embryos, it is advised to add FSH and cysteamine with levels of 60 ng/ml and 100 μM respectively to maturation medium of ovine oocytes obtained from follicles with a diameter > 2 mm.

Keywords

Cysteamine, Follicle Size, FSH, In Vitro Embryo Production, Sheep

Full Text:

PDF

References

Abbara A, Patel A, Hunjan T, Clarke SA, Chia G, Eng PC, Phylactou M, Comninos AN, Lavery S, Trew GH, et al. 2019. FSH requirements for follicle growth during controlled ovarian stimulation. Front Endocrinol. 10:579.

Aryogi, Baliarti E, Sumadi, Kustono. 2013. Follicle development and FSH secretion pattern of Ongole crossbred cow with natural twin birth history. JITV. 18:167–176.

Ashworth CJ, Toma LM, Hunter MG. 2009. Nutritional effects on oocyte and embryo development in mammals: implications for reproductive efficiency and environmental sustainability. Philos Trans R Soc B Biol Sci. 364:3351–3361.

Chapuis A, Gala A, Ferrières-Hoa A, Mullet T, Bringer-Deutsch S, Vintejoux E, Torre A, Hamamah S. 2017. Sperm quality and paternal age: effect on blastocyst formation and pregnancy rates. Basic Clin Androl. 27:1–9.

Chundekkad P, Błaszczyk B, Stankiewicz T. 2020. Embryonic mortality in sheep: a review. Turkish J Veterianry Anim Sci. 44:167–173.

de Oliveira Bezerra A, Nicacio AC, de Oliveira Menezes GR, da Costa Gomes R, da Silva LOC, de Souza Rocha-Frigoni NA, Mingoti GZ, da Silva Leão BC, da Costa e Silva EV, Nogueira É. 2019. Comparison between in vitro embryo production using Y-sorted sperm and timed artificial insemination with non-sorted sperm to produce crossbred calves. Anim Reprod Sci. 208:106101.

Elamaran G, Singh K, Singh M, Singla S, Chauhan M, Manik R, Palta P. 2012. Oxygen concentration and cysteamine supplementation during in vitro production of buffalo (Bubalus bubalis) embryos affect mRNA expression of BCL-2, BCL-XL, MCL-1, BAX and BID. Reprod Domest Anim. 47:1027–1036.

Ervandi M, Susilawati T, Wahyuningsih S. 2013. Pengaruh pengencer yang berbeda terhadap kualitas spermatozoa sapi hasil sexing dengan rradien albumin (putih telur). JITV. 18:177–184.

Gasparrini B, Boccia L, Marchandise J, Di Palo R, George F, Donnay I, Zicarelli L. 2006. Enrichment of in vitro maturation medium for buffalo (Bubalus bubalis) oocytes with thiol compounds: Effects of cystine on glutathione synthesis and embryo development. Theriogenology. 65:275–287.

Gougeon A. 2010. Human ovarian follicular development: From activation of resting follicles to preovulatory maturation. Ann Endocrinol (Paris). 71:132–143.

Grabowska R, Błaszczyk B, Stankiewicz T, Banaś T, Hale S, Udała J. 2016. Quality of oocytes in prepubertal and pubertal swine. Turkish J Veterianry Anim Sci. 40:89–94.

Hammami S, Morató R, Romaguera R, Roura M, Catalá M, Paramio M, Mogas T, Izquierdo D. 2013. Developmental competence and embryo quality of Small oocytes from pre-pubertal goats cultured in IVM medium supplemented with low level of hormones, insulin-transferrin-selenium and ascorbic acid. Reprod Domest Anim. 48:339–344.

Hasler JF. 2014. Forty years of embryo transfer in cattle: A review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces. Theriogenology. 81:152–169.

Imron M, Supriatna I, Amrozi ., Setiadi MA. 2016. Follicular dynamic and repeatability of follicular wave development in Peranakan Ongole (PO) cattle. JITV. 21:26–33.

Izumi H, Miyamoto Y, Mori T, Hashigami Y, Chiba Y, Teramura T, Hashimoto S, Fukuda K, Morimoto Y, Hosoi Y. 2013. Cysteamine supplementation during in vitro maturation (IVM) of rabbit oocyte improves the developmental capacity after intracytoplasmic sperm injection. Reprod Med Biol. 12:179–185.

Kalita K, Deka B, Biswas R, Barua P, Borah P, Dutta D, Das S, P H. 2019. Effect of different types of in vitro maturation medium (IVM) on cumulus cell expansion and nuclear maturation rate of non-vitrified and post vitrified-thawed porcine follicular oocytes. J Fertil Vitr - IVF-Worldwide, Reprod Med Genet Stem Cell Biol. 7:1–6.

Kitagawa Y, Suzuki K, Yoneda A, Watanabe T. 2004. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology. 62:1186–1197.

Kouamo J, Kharche S. 2014. Dose dependent effect of pregnant mare serum gonadotropin and human chorionic gonadotropin on in vitro maturation of goat oocytes. Indian J Anim Sci. 84:410–414.

Kusumaningrum DA, Purwantara B, Yusuf TL, Situmorang P. 2015. Microencapsulation of bovine spermatozoa: Cryopreservation microencapsulation of sperm using glycerol. JITV. 20:233–241.

Lamb J, Shen S, McCulloch C, Jalalian L, Cedars M, Rosen M. 2011. Follicle-stimulating hormone administered at the time of human chorionic gonadotropin trigger improves oocyte developmental competence in in vitro fertilization cycles: a randomized, double-blind, placebo-controlled trial. Fertil Steril. 95:1655–1660.

Lojkić M, Uvodić S, Getz I, Samardžija M, Aladrović J, MaćeÅ¡ić N, Karadjole T, BaÄić G, Matković M, Benić M. 2016. The influence of follicle size on the developmental kinetics of bovine embryos. Vet Arh. 86:613–622.

Lunardelli PA, Marinho LSR, Rosa CO, Alfieri AA, Seneda MM. 2016. Effect of follicular diameter, time of first cleavage and H3K4 methylation on embryo production rates of Bos indicus cattle. Semin Ciências Agrárias. 37:3189–3200.

Mahmoud KGM, El-Sokary MMM, Kandiel MMM, Abou El-Roos MEA, Sosa GMS. 2016. Effects of cysteamine during in vitro maturation on viability and meiotic competence of vitrified buffalo oocytes. Iran J Vet Res. 17:165–170.

Merton JS, Knijn HM, Flapper H, Dotinga F, Roelen BAJ, Vos PLAM, Mullaart E. 2013. Cysteamine supplementation during in vitro maturation of slaughterhouse and opu-derived bovine oocytes

improves embryonic development without affecting cryotolerance, pregnancy rate, and calf characteristics. Theriogenology. 80:365–371.

Muasa B. 2010. Effect of follicle size and cumulus oocyte complex grade on in vitro embryo developmental competence for Boran cows. Kenya (KE): University of Nairobi.

Ranjbar A, Eslampour MA, Moghadam MF. 2018. Effect of cysteamine and 13-cis-retinoic acid on bovine in vitro embryo production. Kafkas Univ Vet Fak Derg. 25:231–137.

SAS Institute Inc. 2017. SAS/STAT® 14.3 User’s Guide: High-Performance Procedures. Cary, NC 27513 (USA): SAS Institute Inc.

Shabankareh HK, Shahsavari MH, Hajarian H, Moghaddam G. 2015. In vitro developmental competence of bovine oocytes: Effect of corpus luteum and follicle size. Iran J Reprod Med. 13:615–622.

Shabankareh HK, Zandi M. 2010. Developmental potential of sheep oocytes cultured in different maturation media: effects of epidermal growth factor, insulin-like growth factor I, and cysteamine. Fertil Steril. 94:335–340.

Situmorang P, Kusumaningrum D, Sianturi R. 2012. Ovulation rates and twinning birth following Follicle Stimulating Hormone (FSH) treatment at different stages of estrus cycle. JITV. 17:73–82.

Situmorang P, Sianturi R, Kusumaningrum D, Triwulaningsih E. 2010. Effects of concentration of Follicle Stimulating Hormone (FSH) on the rates of ovulations and twinning birth. JITV. 15:278–285.

Sumantri C, Imron M, Sugyono, Andreas E, Misrianti R, Ishak A. 2011. Keragaman grup gen hormon pertumbuhan (GH, GHR, GHRH dan Pit-1) dan hubungannya dengan respon superovulasi, tingkat ovulasi, tingkat fertilisasi dan kualitas embrio sapi di Balai Embrio Ternak (BET) Cipelang. JITV. 16:126–139.

Twigg-Flesner A, Newman A, Davies E. 2014. The Effect of Mare Age and Reproductive Status on Embryo Recovery Rate and the Quality of Embryos Recovered. In: Br Soc Anim Sci Conf 2014. United Kingdom (UK).

Wintner EM, Hershko-Klement A, Tzadikevitch K, Ghetler Y, Gonen O, Wintner O, Shulman A, Wiser A. 2017. Does the transfer of a poor quality embryo together with a good quality embryo affect the In Vitro Fertilization (IVF) outcome? J Ovarian Res. 10:2.

Refbacks

  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.